Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 040305    DOI: 10.1088/1674-1056/23/4/040305
GENERAL Prev   Next  

Analysis of dynamical properties for the two-site Bose–Hubbard model with an algebraic method

Meng Xiang-Jia (孟祥佳)a, Feng Hai-Ran (冯海冉)b, Zheng Yu-Jun (郑雨军)a
a School of Physics, Shandong University, Jinan 250100, China;
b Department of Physics and Information Engineering, Jining University, Qufu 273155, China
Abstract  In this work, we propose an algebraic recursion method to study the dynamical evolution of the two-site Bose-Hubbard model. We analyze its properties from the viewpoints of single partite purity, energy, and trace distance, in which the model is considered as a typical bipartite system. The analytical expressions for the quantities are derived. We show that the purity can well reflect the transition between different regimes for the system. In addition, we demonstrate that the transition from the delocalization regime to the self-trapping regime with the ratio η increasing not only happens for an initially local state but also for any initial states. Furthermore, we confirm that the dynamics of the system presents a periodicity for η=0 and the period is tc=π/2J when the initial state is symmetric.
Keywords:  two-site Bose-Hubbard system      dynamical evolution      purity      energy      trace distance  
Received:  15 June 2013      Revised:  17 September 2013      Accepted manuscript online: 
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  32.80.Pj  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91021009 and 21073110).
Corresponding Authors:  Zheng Yu-Jun     E-mail:  yzheng@sdu.edu.cn
About author:  03.75.Kk; 03.75.Lm; 32.80.Pj

Cite this article: 

Meng Xiang-Jia (孟祥佳), Feng Hai-Ran (冯海冉), Zheng Yu-Jun (郑雨军) Analysis of dynamical properties for the two-site Bose–Hubbard model with an algebraic method 2014 Chin. Phys. B 23 040305

[1] Fisher M P A, Weichman P B, Grinstein G and Fisher D S 1989 Phys. Rev. B 40 546
[2] Kühner T D and Monien H 1998 Phys. Rev. B 58 R14741
[3] Li B and Chen J B 2010 Chin. Phys. Lett. 27 123701
[4] Romero-Isart O, Eckert K, Rodó C and Sanpera A 2007 J. Phys. A: Math. Theor. 40 8019
[5] Tomadin A, Mannella R and Wimberger S 2007 Phys. Rev. Lett. 98 130402
[6] Bissbort U, Deuretzbacher F and Hofstetter W 2012 Phys. Rev. A 86 023617
[7] Cao H and Zhao Q 2010 Acta Phys. Sin. 59 2187 (in Chinese)
[8] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
[9] Anders P, Gull E, Pollet L, Troyer M and Werner P 2010 Phys. Rev. Lett. 105 096402
[10] Trefzger C and Sengupta K 2011 Phys. Rev. Lett. 106 095702
[11] Chen B L, Kou S P, Zhang Y and Chen S 2010 Phys. Rev. A 81 053608
[12] Sakmann K, Streltsov A I, Alon O E and Cederbaum L S 2010 Phys. Rev. A 82 013620
[13] Collura M, Aufderheide H, Roux G and Karevski D 2012 Phys. Rev. A 86 013615
[14] Pino M, Prior J, Somoza A M, Jaksch D and Clark S R 2012 Phys. Rev. A 86 023631
[15] Xie Y D 2012 Acta Phys. Sin. 61 023201 (in Chinese)
[16] Ziegler K 2010 Phys. Rev. A 81 034701
[17] Longhi S 2011 J. Phys. B: At. Mol. Opt. Phys. 44 051001
[18] Melé-Messeguer M, Juliá-Díaz B and Polls A 2011 J. Low. Temp. Phys. 165 180
[19] Mazzarella G, Salasnich L, Parola A and Toigo F 2011 Phys. Rev. A 83 053607
[20] Dell'Anna L 2012 Phys. Rev. A 85 053608
[21] Greiner M, Mandel O, Esslinger T, Hansch T W and Bloch I 2002 Nature 415 39
[22] Buonsante P and Vezzani A 2007 Phys. Rev. Lett. 98 110601
[23] Deng X and Santos L 2011 Phys. Rev. B 84 085138
[24] Ng K K, Chen Y C and Tzeng Y C 2010 J. Phys.: Condens. Matter 22 185601
[25] Xu Y and Li J B 2012 Acta Phys. Sin. 61 110207 (in Chinese)
[26] Wang Y M and Liang J Q 2012 Chin. Phys. B 21 060305
[27] Zhou L, Liu Z J and Yan W B 2011 Chin. Phys. B 20 074205
[28] Underwood M S and Feder D L 2012 Phys. Rev. A 85 052314
[29] Oktel M Ö, Niţă M and Tanatar B 2007 Phys. Rev. B 75 045133
[30] Ejima S, Fehske H and Gebhard F 2011 Europhys. Lett. 93 30002
[31] Rossini D and Fazio R 2012 New J. Phys. 14 065012
[32] Zhang J M and Dong R X 2010 Eur. J. Phys. 31 591
[33] Wang L, Hao Y and Chen S 2008 Eur. Phys. J. D 48 229
[34] Teichmann N, Hinrichs D and Holthaus M 2009 Phys. Rev. B 79 224515
[35] Mazzarella G, Moratti M, Salasnich L and Toigo F 2010 J. Phys. B: At. Mol. Opt. Phys. 43 065303
[36] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[37] Laine E M, Piilo J and Breuer H P 2010 Phys. Rev. A 81 062115
[38] Juliá-Díaz B, Dagnino D, Lewenstein M, Martorell J and Polls A 2010 Phys. Rev. A 81 023615
[39] Yu T 2007 Phys. Lett. A 361 287
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[3] Ridge regression energy levels calculation of neutral ytterbium (Z = 70)
Yushu Yu(余雨姝), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(3): 033101.
[4] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[5] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[6] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[7] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[8] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[9] Anionic redox reaction mechanism in Na-ion batteries
Xueyan Hou(侯雪妍), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(9): 098801.
[10] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[11] A 45-μJ, 10-kHz, burst-mode picosecond optical parametric oscillator synchronously pumped at a second harmonic cavity
Chao Ma(马超), Ke Liu(刘可), Yong Bo(薄勇), Zhi-Min Wang(王志敏), Da-Fu Cui(崔大复), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084206.
[12] How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics
S Sankararaman. Chin. Phys. B, 2022, 31(8): 088201.
[13] Theoretical and experimental study of phase optimization of tapping mode atomic force microscope
Zheng Wei(魏征), An-Jie Peng(彭安杰), Feng-Jiao Bin(宾凤姣), Ya-Xin Chen(陈亚鑫), and Rui Guan(关睿). Chin. Phys. B, 2022, 31(7): 076801.
[14] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[15] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
No Suggested Reading articles found!