Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 040303    DOI: 10.1088/1674-1056/23/4/040303
GENERAL Prev   Next  

Engineering steady-state entanglement for two atoms held in separate cavities through laser cooling

Shen Li-Tuo (沈利托), Chen Rong-Xin (陈荣鑫), Wu Huai-Zhi (吴怀志), Yang Zhen-Biao (杨贞标)
Laboratory of Quantum Optics, Department of Physics, Fuzhou University, Fuzhou 350002, China
Abstract  We propose a scheme to prepare the steady-state entanglement for two atoms, which are held in separate cavities that are coupled through a short optical fiber or optical resonator. The entangled steady-state with a high fidelity can be achieved even with a low cooperativity parameter, by making use of the driving laser fields. Such a cooling mechanism is based on a resonant laser pump of the unwanted ground states to the excited states, which finally decay to the desired steady-state.
Keywords:  laser cooling      steady-state entanglement      optical fiber  
Received:  19 July 2013      Revised:  09 September 2013      Accepted manuscript online: 
PACS:  03.67.Bg (Entanglement production and manipulation)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the Major State Basic Research Development Program of China (Grant No. 2012CB921601), the National Natural Science Foundation of China (Grant Nos. 11374054, 11305037, 11347114, and 11247283), the Natural Science Foundation of Fujian Province of China (Grant No. 2013J01012), and the Fund from Fuzhou University (Grant Nos. 022513, 022408, and 600891).
Corresponding Authors:  Yang Zhen-Biao     E-mail:  zbyang@fzu.edu.cn
About author:  03.67.Bg; 42.50.Pq

Cite this article: 

Shen Li-Tuo (沈利托), Chen Rong-Xin (陈荣鑫), Wu Huai-Zhi (吴怀志), Yang Zhen-Biao (杨贞标) Engineering steady-state entanglement for two atoms held in separate cavities through laser cooling 2014 Chin. Phys. B 23 040303

[1] Kastoryano M J, Reiter F and Sorensen A S 2011 Phys. Rev. Lett. 106 090502
[2] Reiter F and Sorensen A S 2012 Phys. Rev. A 85 032111
[3] Reiter F, Kastoryano M J and Sorensen A S 2012 New J. Phys. 14 053022
[4] Shen L T, Chen X Y, Yang Z B, Wu H Z and Zheng S B 2012 Eur. Phys. Lett. 99 20003
[5] Vacanti G and Beige A 2009 New J. Phys. 11 083008
[6] Roghani M, Breuer H P and Helm H 2012 Phys. Rev. A 85 012313
[7] Busch J, De S, Ivanov S S, Torosov B T, Spiller T P and Beige A 2011 Phys. Rev. A 84 022316
[8] Cho J, Bose S and Kim M 2011 Phys. Rev. Lett. 106 020504
[9] Shen L T, Chen X Y, Yang Z B, Wu H Z and Zheng S B 2013 Quantum Inf. Comput. 13 0281
[10] Wineland D J and Itano W M 1979 Phys. Rev. A 20 1521
[11] Ogden C D, Irish E K and Kim M S 2008 Phys. Rev. A 78 063805
[12] Hartmann M J, Brandão F G S L and Plenio M B 2008 Laser Photon. Rev. 2 527
[13] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[14] Plenio M B, Huelga S F, Beige A and Knight P L 1999 Phys. Rev. A 59 2468
[15] Duan L M and Kimble H J 2004 Phys. Rev. Lett. 92 127902
[16] Benatti F, Floreanini R and Piani M 2003 Phys. Rev. Lett. 91 070402
[17] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[18] Cho J, Angelakis D G and Bose S 2008 Phys. Rev. A 78 022323
[19] Zhong Z R 2010 Chin. Phys. Lett. 27 100305
[20] Hu X M and Zhang X H 2011 Chin. Phys. B 20 114205
[21] Chen M F and Ma S S 2009 Chin. Phys. B 18 3247
[22] Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett. 96 010503
[23] Yang Z B, Wu H Z, Xia Y and Zheng S B 2011 Eur. Phys. J. D 61 737
[24] Yang Z B, Wu H Z, Su W J and Zheng S B 2009 Phys. Rev. A 80 012305
[25] Yin Z Q and Li F L 2007 Phys. Rev. A 75 012324
[26] Song J, Xia Y, Song H S, Guo J L and Nie J 2007 Eur. Phys. Lett. 80 60001
[27] Li W A and Wei L F 2012 Opt. Express 20 13440
[28] Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever J and Kimble H J 2004 Phys. Rev. Lett. 93 233603
[29] Volz J, Gehr R, Dubois G, Estéve J and Reichel J 2011 Nature 475 210
[30] Sato Y, Tanaka Y, Upham J, Takahashi Y, Asano T and Noda S 2011 Nat. Photon. 6 56
[1] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[2] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[3] Enhanced cold mercury atom production with two-dimensional magneto-optical trap
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹). Chin. Phys. B, 2022, 31(7): 073701.
[4] A radiation-temperature coupling model of the optical fiber attenuation spectrum in the Ge/P co-doped fiber
Yong Li(李勇), Haoshi Zhang(张浩石), Xiaowei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(7): 074211.
[5] Manipulating vector solitons with super-sech pulse shapes
Yan Zhou(周延), Keyun Zhang(张克赟), Chun Luo(罗纯), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2022, 31(5): 054203.
[6] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[7] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[8] Ground state cooling of an optomechanical resonator with double quantum interference processes
Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(2): 023701.
[9] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[10] Quantum entanglement dynamics based oncomposite quantum collision model
Xiao-Ming Li(李晓明), Yong-Xu Chen(陈勇旭), Yun-Jie Xia(夏云杰), Qi Zhang(张琦), Zhong-Xiao Man(满忠晓). Chin. Phys. B, 2020, 29(6): 060302.
[11] Lax pair and vector semi-rational nonautonomous rogue waves for a coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber
Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧). Chin. Phys. B, 2020, 29(3): 030202.
[12] Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers
Di Zhang(张迪), Yu-Qing Li(李玉清), Yun-Fei Wang(王云飞), Yong-Ming Fu(付永明), Peng Li(李鹏), Wen-Liang Liu(刘文良), Ji-Zhou Wu(武寄洲), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(2): 023203.
[13] Sensitivity enhancement of WS2-coated SPR-based optical fiber biosensor for detecting glucose concentration
Yun Cai(蔡云), Wei Li(李卫), Ye Feng(冯烨), Jian-Sheng Zhao(赵建胜), Gang Bai(白刚), Jie Xu(许杰), and Jin-Ze Li(李金泽)$. Chin. Phys. B, 2020, 29(11): 110701.
[14] Dissipative generation for steady-state entanglement of two transmons in circuit QED
Shuang He(何爽), Dan Liu(刘丹), Ming-Hao Li(李明浩). Chin. Phys. B, 2019, 28(8): 080303.
[15] Hollow and filled fiber bragg gratings in nano-bore optical fibers
Yong-Xin Zhang(张永欣), Sheng Liang(梁生), Qian-Qing Yu(余倩卿), Zheng-Gang Lian(廉正刚), Zi-Nian Dong(董梓年), Xuan Wang(王旋), Yu-Qin Lin(林裕勤), Yu-Qi Zou(邹郁祁), Kun Xing(邢坤), Liu-Yan Liang(梁柳雁), Xiao-Ting Zhao(赵小艇), Li-Jing Tu(涂立静). Chin. Phys. B, 2019, 28(7): 074210.
No Suggested Reading articles found!