Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 024211    DOI: 10.1088/1674-1056/23/2/024211
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Beam control in tri-core photonic lattices

Ye Zhuo-Yi (叶卓艺)a b, Xia Shi-Qiang (夏世强)a, Song Dao-Hong (宋道红)a, Tang Li-Qin (唐莉勤)a, Lou Ci-Bo (楼慈波)a
a The MOE Key Laboratory of Weak Light Nonlinear Photonics, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin 300457, China;
b Innovation Center, Bureau of Economic Development and Administrative Approval, Ningbo–Hangzhou Bay New Zone Administrator Committee, Ningbo 315336, China
Abstract  We report on theoretical investigations of beam control in one-dimensional tri-core photonic lattices (PLs). Linear splitting is illustrated in tri-core PLs; the effect of defect strength on the splitting is discussed in depth for single-wavelength light. We reveal that splitting disappears when the defect strength trends to zero, while reoccurring under nonlinearity. Multi-color splitting and active control are also proposed in such photonic structures.
Keywords:  tri-core photonic lattices      splitting  
Received:  11 March 2013      Revised:  30 May 2013      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Wi (Nonlinear waveguides)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Project supported by the State Key Program for Basic Research of China (Grant Nos. 2013CB632703 and 2010CB934101), the National Natural Science Foundation of China (Grant Nos. 10904078 and 60908002), the International Science & Technology Cooperation Program of China (Grant No. 2011DFA52870), the International Cooperation Program of Tianjin (Grant No. 11ZGHHZ01000), the "111" Project (Grant No. B07013), the Program for New Century Excellent Talents in University of China (Grant No. NCET-10-0507), and the Specialized Research Fund for the Doctorial Program of Higher Education of China (Grant No. 20120031120031).
Corresponding Authors:  Tang Li-Qin     E-mail:  tanya@nankai.edu.cn
About author:  42.65.-k; 42.65.Wi; 42.65.Tg

Cite this article: 

Ye Zhuo-Yi (叶卓艺), Xia Shi-Qiang (夏世强), Song Dao-Hong (宋道红), Tang Li-Qin (唐莉勤), Lou Ci-Bo (楼慈波) Beam control in tri-core photonic lattices 2014 Chin. Phys. B 23 024211

[1] Christodoulides D N, Lederer F and Silberberg Y 2003 Nature 424 817
[2] Tang X G, Liao J K, Li H P, Zhang L, Lu R G and Liu Y Z 2011 Chin. Opt. Lett. 9 012301
[3] Zhou J T, Shen H J, Jia R, Liu H M, Tang Y D, Yang C Y, Xue C L and Liu X Y 2011 Chin. Opt. Lett. 9 082303
[4] Makasyuk I, Chen Z G and Yang J K 2006 Phys. Rev. Lett. 96 223903
[5] Fedele F, Yang J K and Chen Z G 2005 Opt. Lett. 30 1506
[6] Wang X S, Chen Z G and Yang J K 2006 Opt. Lett. 31 1887
[7] Wang X S and Chen Z G 2009 Opt. Express 17 16927
[8] Mekis A, Chen J C, Kurland I, Fan S H, Villeneuve P R and Joannopoulos J D 1996 Phys. Rev. Lett. 77 3787
[9] Yang X Y, Zheng J B and Dong L W 2011 Chin. Phys. B 20 034208
[10] Zhou K Y, Guo Z Y, Muhammad A A and Liu S T 2010 Chin. Phys. B 19 014201
[11] Christodoulides D N and Eugenieva E D 2001 Phys. Rev. Lett. 87 233901
[12] Smirnov E, Rüter C E, Stepic M, Shandarov V and Kip D 2006 Opt. Express 14 11248
[13] Knight J C 2003 Nature 424 847
[14] Friberg S R, Weiner A M, Silberberg Y, Sfez B G and Smith P S 1988 Opt. Lett. 13 904
[15] Yariv A, Xu Y, Lee R K and Scherer A 1999 Opt. Lett. 24 711
[16] Salgueiro J R and Kivshar Y S 2005 Opt. Lett. 30 1858
[17] Fogli F, Saccomandi L, Bassi P, Bellanca G and Trillo S 2002 Opt. Express 10 54
[18] Ye F, Kartashov Y V, Vysloukh V A and Torner L 2008 Phys. Rev. A 78 013847
[19] Mori D and Baba T 2004 Appl. Phys. Lett. 85 1101
[20] Chen L, Wang G P, Gan Q Q and Bartoli F J 2010 Appl. Phys. Lett. 97 153115
[21] Chen L, Wang G P, Li X, Li W, Shen Y, Lai J and Chen S 2011 Appl. Phys. B 104 653
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems
Beibei Zhu(朱贝贝), Lun Ji(纪伦), Aiqing Zhu(祝爱卿), and Yifa Tang(唐贻发). Chin. Phys. B, 2023, 32(2): 020204.
[3] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[4] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[5] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[6] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[7] Quantum mechanical solution to spectral lineshape in strongly-coupled atom-nanocavity system
Jian Zeng(曾健) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(4): 043202.
[8] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[9] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[10] M1 transition energy and rate in the ground configuration of Ag-like ions with 62 ≤ Z ≤ 94
Ju Meng(孟举), Wen-Xian Li(李文显), Ji-Guang Li(李冀光), Ze-Qing Wu(吴泽清), Jun Yan(颜君), Yong Wu(吴勇), and Jian-Guo Wang(王建国). Chin. Phys. B, 2022, 31(1): 013101.
[11] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[12] Giant Rashba-like spin-orbit splitting with distinct spin texture in two-dimensional heterostructures
Jianbao Zhu(朱健保), Wei Qin(秦维), and Wenguang Zhu(朱文光). Chin. Phys. B, 2021, 30(8): 087307.
[13] Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation
Xianyin Song(宋先印), Hongtao Zhou(周洪涛), and Changzhong Jiang(蒋昌忠). Chin. Phys. B, 2021, 30(5): 058505.
[14] Theoretical analysis and numerical simulation of acoustic waves in gas hydrate-bearing sediments
Lin Liu(刘琳), Xiu-Mei Zhang(张秀梅), and Xiu-Ming Wang(王秀明). Chin. Phys. B, 2021, 30(2): 024301.
[15] Droplets breakup via a splitting microchannel
Wei Gao(高崴), Cheng Yu(于程), Feng Yao(姚峰). Chin. Phys. B, 2020, 29(5): 054702.
No Suggested Reading articles found!