Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 125201    DOI: 10.1088/1674-1056/23/12/125201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Charging and absorption characteristics of small particulates under alternative and electrostatic voltages in an electrostatic precipitator

Jiang Xue-Dong (姜学东), Xu He (徐鹤), Wang Xin (王昕)
School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
Abstract  The charge quantity of small particulates such as PM2.5 plays a key role in the collection efficiency of an electrostatic precipitator (ESP). Under a single electrostatic voltage, it is difficult to charge and absorb small particulates. A new method of superimposing an alternative voltage on the electrostatic voltage is provided in this paper. Characteristics of small particulates are analyzed under alternative and electrostatic voltages. It is demonstrated that an alternative voltage can significantly improve the collection efficiency in three aspects: preventing anti-corona, increasing the charge quantity of small particulates, and increasing the median particulate size by electric agglomeration. In addition, practical usage with the superposition of alternative voltage is provided, and the results are in agreement with the theoretical analysis.
Keywords:  charged characteristics      anti-corona      electric agglomeration      alternative voltage  
Received:  06 May 2014      Revised:  01 September 2014      Accepted manuscript online: 
PACS:  52.20.Fs (Electron collisions)  
  52.80.Tn (Other gas discharges)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2004AA52930) and the Fundamental Research Funds for the Central Universities (Grant No. 2014JBM109).
Corresponding Authors:  Jiang Xue-Dong     E-mail:  xdjiang@bjtu.edu.cn

Cite this article: 

Jiang Xue-Dong (姜学东), Xu He (徐鹤), Wang Xin (王昕) Charging and absorption characteristics of small particulates under alternative and electrostatic voltages in an electrostatic precipitator 2014 Chin. Phys. B 23 125201

[1]Xie G R and Chen C X 1993 High-voltage Electrostatic Precipitators, 2nd edn. (Beijing: Water Power Press)
[2]Wu C Y, Yang Y P and Zang L Y 2010 2nd IEEE International Conference on Advanced Computer Control, March 27-29, 2010, Shenyang, China, pp. 401-404
[3]Poppendieck D G, Rim D and Persily A K 2014 Environ. Sci. Technol. 48 2067
[4]Tamás I váncsy, István K and István B 2009 J. Electrostatics 67 146
[5]Fan J Q and Hao J H 2011 Chin. Phys. B 20 068402
[6]Amos P K T, Mickley L J and Jacob D J 2010 Atmos. Environ. 44 3976
[7]Wolfgang S and Rolando G 2014 Electrochim. Acta 127 489
[8]Liu X, He W, Yang F, Wang H Y, Liao R J and Xiao H G 2012 Chin. Phys. B 21 075201
[9]Jedrusik M, Swierczok A and Jaworek A 2013 J. Phys. Conf. Ser. 418 012069
[10]Xu F, Luo Z Y and Wei B 2008 The 11th International Conference on Electrostatic Precipitation, Hangzhou, China, pp. 242-246
[11]Lin W Y, Chang Y Y, Lien C T and Kuo C W 2011 Aerosol Sci. Tech. 45 393
[12]Zhang X R and Wang L Z 2012 Appl. Mech. Mater. 152 154997
[13]Zhao Y, Guo T X, Zhao X C and Xia W W 2010 Environ. Sci. Technol. 33 68
[14]Le T C, Lin G Y and Tsai C J 2013 Aerosol and Air Quality Research 13 1404
[15]Drews A M, Cademartiri L, Whitesides G M and Bishop K J M 2013 J. Appl. Phys. 114 143302
[16]Liao R J, Wu F F, Liu X H, Yang F, Yang L J, Zhou Z and Zhai L 2012 Acta. Phys. Sin. 61 245201 (in Chinese)
[17]Liu X, Li S L and Li M S 2013 Plasma Science and Technology 15 1215
[18]Wei H L, Liu Z L, Liu D M, Li Z G and Lu D S 1996 Chin. Phys. 5 100
[19]Li Q, Wang H, Liu L H and Liu H Q 2009 The 15th Electrostatic Academic Annual Meeting of Chinese Physical Society, August 19, 2009, Zhengzhou, China, pp. 69-79
[20]Xie B,Wang Q, Li H and Liao Y 2012 Electric Power Technology and Environmental Protection 28 27
[21]Li J W and Cai W J 2008 6th International Conference on Applied Electrostatics, November 3-7, Shanghai, China, pp. 123-126
[22]Hu X T, Jiang X D, Yan K P and Li R N 2008 Sci. Technol. Rev. 26 48
[23]Ma J X 2006 Physics 35 244 (in Chinese)
[24]Lin Y Z, Jia J C and Shi X C 2012 Electrotechnical Application 31 54
[25]Cai B, Wei J Y, Jiang F and Zhang Z Z 2006 Sci. Technol. Rev. 24 35
[26]Chen W S, Dong W, Guo J Y and Xiang X D 2008 Industrial Safety and Environmental Protection 34 1
[27]Zhou J G, Liu D, Bai M D and Qiu X M 2009 Environmental Engineering 27
[28]Feng T 2006 Heteropolar Charged Dust in the Field of Coagulation and Collection (Tianjin: Tianjin University Press) (in Chinese)
[29]Li Z H, Liu H X, Guo F and Yu S L 2013 The 11th Chinese Academic Conference on Electrostatic Precipitation, October 20, 2013, Bengbu, China
[30]Liu D, Bai M D, Wang Y W and Bai X Y 2009 Sci. Technol. Rev. 27 61
[31]Wang X F and Shi L Q 2010 Chin. Phys. B. 19 107502
[1] Modeling of beam ions loss and slowing down with Coulomb collisions in EAST
Yifeng Zheng(郑艺峰), Jianyuan Xiao(肖建元), Baolong Hao(郝保龙), Liqing Xu(徐立清), Yanpeng Wang(王彦鹏), Jiangshan Zheng(郑江山), and Ge Zhuang(庄革). Chin. Phys. B, 2022, 31(7): 075201.
[2] Debye-screening effect on electron-impact excitation of helium-like Al11+ and Fe24+ ions
Yu-Long Ma(马玉龙), Ling Liu(刘玲), Lu-You Xie(颉录有), Yong Wu(吴勇), Deng-Hong Zhang(张登红), Chen-Zhong Dong(董晨钟), Yi-Zhi Qu(屈一至), and Jian-Guo Wang(王建国). Chin. Phys. B, 2022, 31(4): 043401.
[3] ISSDE: A Monte Carlo implicit simulation code based on Stratonovich SDE approach of Coulomb collision
Yifeng Zheng(郑艺峰), Jianyuan Xiao(肖建元), Yanpeng Wang(王彦鹏), Jiangshan Zheng(郑江山), and Ge Zhuang(庄革). Chin. Phys. B, 2021, 30(9): 095201.
[4] The inverse Bremsstrahlung absorption in the presence of Maxwellian and non-Maxwellian electrons
Mehdi Sharifian, Fatemeh Ghoveisi, Leila Gholamzadeh, Narges Firouzi Farrashbandi. Chin. Phys. B, 2019, 28(10): 105202.
[5] Damped electrostatic ion acoustic solitary wave structures in quantum plasmas with Bohm potential and spin effects
S Hussain, H Hasnain, Mahnaz Q. Haseeb. Chin. Phys. B, 2019, 28(1): 015202.
[6] Effects of the insulated magnetic field and oblique incidence of electrons on the multipactor in MILO
Fan Jie-Qing(范杰清) and Hao Jian-Hong(郝建红). Chin. Phys. B, 2011, 20(6): 068402.
[7] NUMERICAL SIMULATION OF ECR PLASMA SOURCES
SHAO FU-QIU (邵福球), WANG LONG (王龙), YAO XIN-ZI (姚鑫兹), WU HAN-MIN (吴汉明). Chin. Phys. B, 1996, 5(9): 677-691.
[8] THEORETICAL INVESTIGATION OF ELECTRON-NEUTRAL ATOM COLLISION PROCESS AND ELECTRON TRANSPORT PARAMETERS IN DC GLOW DISCHARGE OF PLASMA WITH A TRANSVERSE MAGNETIC FIELD
WEI HE-LIN (魏合林), LIU ZU-LI (刘祖黎), LI ZAI-GUANG (李再光), ZHENG QI-GUANG (郑启光). Chin. Phys. B, 1996, 5(7): 520-529.
[9] ELECTRON TRANSPORT BEHAVIOR IN NORMAL AND ABNORMAL DIRECT CURRENT DISCHARGE CATHODE SHEATH
WEI HE-LIN (魏合林), LIU ZU-LI (刘祖黎), LIU DA-MIANG (刘大明), LI ZAI-GUANG (李再光), LU DONG-SHENG (陆冬生). Chin. Phys. B, 1996, 5(2): 100-112.
[10] ELECTRON DIFFUSION IN A NON-UNIFORM ELECTRIC FIELD AND A UNIFORM MAGNETIC FIELD
WEI HE-LIN (魏合林), LIU ZU-LI (刘祖黎), YU BO-MING (郁伯铭), LI ZAI-GUANG (李再光). Chin. Phys. B, 1996, 5(2): 90-99.
[11] NON-BOLTZMANN ENERGY LEVEL DISTRIBUTIONS OF ARGON ATOMS IN THE INDUCTIVELY COUPLED ARGON PLASMA
HUANG MAO (黄矛), LIU KE-LING (刘克玲). Chin. Phys. B, 1992, 1(1): 11-18.
No Suggested Reading articles found!