Please wait a minute...
Acta Physica Sinica (Overseas Edition), 1996, Vol. 5(2): 90-99    DOI: 10.1088/1004-423X/5/2/002
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

ELECTRON DIFFUSION IN A NON-UNIFORM ELECTRIC FIELD AND A UNIFORM MAGNETIC FIELD

WEI HE-LIN (魏合林)a, LIU ZU-LI (刘祖黎)a, YU BO-MING (郁伯铭)a, LI ZAI-GUANG (李再光)b
a Department of Physics, Huazhong University of Science and Technology, Wuhan 4300074, China; b Stale Key Laboratory of Laser Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  A Monte Carlo simulation technique has been used to model the electron transport beharlot, especially the electron diffusion motion, in the cathode fall region of a glow discharge under the influence of a non-uniform electric field and a transverse magnetic field perpen-dicular to the cathode sheath electric field. Three types of collisions (elastic, excitation and ionization) are taken into account in our model. The electron free flying time is determined by the electron-neutral atom collision frequency. We focus attention on the electron diffusion distance and velocity. The electron-neutral atom collision processes and the electron drift velocity are also studied. The results indicate that with the increase of the magnetic field the electron diffusion distance increases and the electron diffusion velocity decreases. The results Mso show that the collision processes are enhanced by the magnetic field, this is in agreement with the experimental result. However, the axial magnetic field does not affect the electron transport behavior.
Received:  11 November 1994      Accepted manuscript online: 
PACS:  52.80.Hc (Glow; corona)  
  52.25.Fi (Transport properties)  
  52.40.Kh (Plasma sheaths)  
  52.20.Hv (Atomic, molecular, ion, and heavy-particle collisions)  
  52.20.Fs (Electron collisions)  
Fund: Project supported by the National Natural Science Foundation of China.

Cite this article: 

WEI HE-LIN (魏合林), LIU ZU-LI (刘祖黎), YU BO-MING (郁伯铭), LI ZAI-GUANG (李再光) ELECTRON DIFFUSION IN A NON-UNIFORM ELECTRIC FIELD AND A UNIFORM MAGNETIC FIELD 1996 Acta Physica Sinica (Overseas Edition) 5 90

[1] Review on ionization and quenching mechanisms of Trichel pulse
Anbang Sun(孙安邦), Xing Zhang(张幸), Yulin Guo(郭雨林), Yanliang He(何彦良), and Guanjun Zhang(张冠军). Chin. Phys. B, 2021, 30(5): 055207.
[2] Numerical simulation on ionic wind in circular channels
Gui-Wen Zhang(张桂文), Jue-Kuan Yang(杨决宽), and Xiao-Hui Lin(林晓辉). Chin. Phys. B, 2021, 30(1): 014701.
[3] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[4] Characteristics and underlying physics of ionic wind in dc corona discharge under different polarities
Tongkai Zhang(张桐恺), Yu Zhang(张宇), Qizheng Ji(季启政), Ben Li(李犇), Jiting Ouyang(欧阳吉庭). Chin. Phys. B, 2019, 28(7): 075202.
[5] Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak
Y K Zhang(张永宽), R J Zhou(周瑞杰), L Q Hu(胡立群), M W Chen(陈美文), Y Chao(晁燕), EAST team. Chin. Phys. B, 2018, 27(5): 055206.
[6] Sterilization of mycete attached on the unearthed silk fabrics by an atmospheric pressure plasma jet
Rui Zhang(张锐), Jin-song Yu(於劲松), Jun Huang(黄骏), Guang-liang Chen(陈光良), Xin Liu(刘欣), Wei Chen(陈维), Xing-quan Wang(王兴权), Chao-rong Li(李超荣). Chin. Phys. B, 2018, 27(5): 055207.
[7] Effect of electrical discharge in water on concentration of nitrate solution
F Sohbatzadeh, H Bagheri, R Safari. Chin. Phys. B, 2017, 26(2): 025101.
[8] Numerical simulation of a direct current glow discharge in atmospheric pressure helium
Zeng-Qian Yin(尹增谦), Yan Wang(汪岩), Pan-Pan Zhang(张盼盼), Qi Zhang(张琦), Xue-Chen Li(李雪辰). Chin. Phys. B, 2016, 25(12): 125203.
[9] A novel simulation method for positive corona current pulses
Liu Yang (刘阳), Cui Xiang (崔翔), Lu Tie-Bing (卢铁兵), Li Xue-Bao (李学宝), Wang Zhen-Guo (王振国), Xiang Yu (向宇), Wang Xiao-Bo (王小波). Chin. Phys. B, 2015, 24(6): 065201.
[10] Nitriding molybdenum: Effects of duration and fill gas pressure when using 100-Hz pulse DC discharge technique
U. Ikhlaq, R. Ahmad, M. Shafiq, S. Saleem, M. S. Shah, T. Hussain, I. A. Khan, K. Abbas, M. S. Abbas. Chin. Phys. B, 2014, 23(10): 105203.
[11] Characteristics of a large gap uniform discharge excited by DC voltage at atmospheric pressure
Li Xue-Chen (李雪辰), Bao Wen-Ting (鲍文婷), Jia Peng-Ying (贾鹏英), Zhao Huan-Huan (赵欢欢), Di Cong (狄聪), Chen Jun-Ying (陈俊英). Chin. Phys. B, 2014, 23(9): 095202.
[12] Mode transition in homogenous dielectric barrier discharge in argon at atmospheric pressure
Liu Fu-Cheng (刘富成), He Ya-Feng (贺亚峰), Wang Xiao-Fei (王晓菲). Chin. Phys. B, 2014, 23(7): 075209.
[13] Determinations of plasma density and decay time in the hollow cathode discharge by microwave transmission
Zhang Lin (张林), He Feng (何锋), Li Shi-Chao (李世超), Ouyang Ji-Ting (欧阳吉庭). Chin. Phys. B, 2013, 22(12): 125202.
[14] Local electron mean energy profile of positive primary streamer discharge with pin-plate electrodes in oxygen–nitrogen mixtures
Sima Wen-Xia (司马文霞), Peng Qing-Jun (彭庆军), Yang Qing (杨庆), Yuan Tao (袁涛), Shi Jian (施健). Chin. Phys. B, 2013, 22(1): 015203.
[15] Fabricating a reactive surface on the fibroin film by a room-temperature plasma jet array for biomolecule immobilization
Chen Guang-Liang (陈光良), Zheng Xu (郑旭), Lü Guo-Hua (吕国华), Zhang Zhao-Xia (张朝霞), Sylvain Massey, Wilson Smith, Michael Tatoulian, Yang Si-Ze (杨思泽). Chin. Phys. B, 2012, 21(10): 105201.
No Suggested Reading articles found!