Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 125202    DOI: 10.1088/1674-1056/23/12/125202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

New terahertz dispersive device for single-shot spectral measurements of terahertz pulse

Wu Yin-Zhong (巫殷忠)a b, Zhao Zong-Qing (赵宗清)a b, Gu Yu-Qiu (谷渝秋)a b, Wei Lai (魏来)b, Cao Lei-Feng (曹磊峰)a b
a Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics, Mianyang 621900, China;
b Research Center of Laser Fusion, Chinese Academy of Engineering Physics, Mianyang 621900, China
Abstract  A new terahertz dispersive device designed for single-shot spectral measurements of broadband terahertz pulses is proposed. With two-dimensional quasi-randomly distributed element design, the device exhibits approximately the dispersive property of single-order diffraction in far field. Its far-field diffraction pattern is experimentally verified employing a continuous terahertz source centered at 2.52 THz and a pyroelectric focal-plane-array camera, which is in good agreement with the numerical result. The device provides a new approach for direct single-shot spectral measurements of broadband terahertz waves.
Keywords:  terahertz      diffraction      single-shot      spectral measurement  
Received:  27 July 2014      Revised:  11 August 2014      Accepted manuscript online: 
PACS:  52.70.Kz (Optical (ultraviolet, visible, infrared) measurements)  
Fund: Project supported by the Foundation of Science and Technology Development of China Academy of Engineering Physics (Grant No. 2011B0102023) and the Foundation of Plasma Physics Laboratory (Grant No. 9140C680304110C6806).
Corresponding Authors:  Cao Lei-Feng     E-mail:  liaode_2002@yahoo.com.cn

Cite this article: 

Wu Yin-Zhong (巫殷忠), Zhao Zong-Qing (赵宗清), Gu Yu-Qiu (谷渝秋), Wei Lai (魏来), Cao Lei-Feng (曹磊峰) New terahertz dispersive device for single-shot spectral measurements of terahertz pulse 2014 Chin. Phys. B 23 125202

[1]Hamster H, Sullivan A, Gordon S, White W, and Falcone R W 1993 Phys. Rev. Lett. 71 2725
[2]Leemans W P, Geddes C R, Faure J, Toth C, Tilborg J V, Schroeder C B, Esarey E, Fubiani G, Auerbach D, Marcelis B, Carnahan M A, Kaindl R A, Byrd J and Martin M C 2003 Phys. Rev. Lett. 91 074802
[3]Dai J M, Karpowicz N and Zhang X C 2009 Phys. Rev. Lett. 103 023001
[4]Sheng Z M, Mima K, Zhang J and Sanuki H 2005 Phys. Rev. Lett. 94 095003
[5]Li Y T, Wang W M, Li C and Sheng Z M 2012 Chin. Phys. B 21 095203
[6]Tilborg J V, Schroeder C B, Filip C V, Toth C, Geddes C R, Fubiani G, Huber R, Kaindl R A, Esarey E and LeemansWP 2006 Phys. Rev. Lett. 96 014801
[7]Wu Q, Litz M and Zhang X C 1996 Appl. Phys. Lett. 68 2924
[8]Delsim-Hashemi H 2006 Proceedings of FEL 2006 on FEL Technology, ed. Tilborg (Berlin: Springer)
[9]Wei L, Cao L F, Fan W, Zang H P, Gao Y L, Zhu X L, Xie C Q, Gu Y Q, Zhang B H and Wang X F 2011 High Power Laser and Particle Beams 23 387 (in Chinese)
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[3] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[7] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[8] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[9] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[10] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[11] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[12] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[13] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[14] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[15] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
No Suggested Reading articles found!