Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 015202    DOI: 10.1088/1674-1056/28/1/015202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Damped electrostatic ion acoustic solitary wave structures in quantum plasmas with Bohm potential and spin effects

S Hussain1, H Hasnain1, Mahnaz Q. Haseeb2
1 Theoretical Physics Division(TPD), PINSTECH, P. O. Nilore, Islamabad, Pakistan;
2 Department of Physics, COMSATS University, Islamabad, Pakistan
Abstract  

Nonlinear properties of ion acoustic solitary waves are studied in the case of dense magnetized plasmas. The degenerate electrons with relative density effects from their spin states in the same direction and from equally probable up and down spinning states are taken up separately. Quantum statistical as well as quantum tunneling effects for both types of electrons are taken. The ions have large inertia and are considered classically, whereas the electrons are degenerate. The collisions of ions and electrons with neutral atoms are considered. We derive the deformed Korteweg de-Vries (DKdV) equation for small amplitude electrostatic potential disturbances by employing the reductive perturbation technique. The Runge-Kutta method is applied to solve numerically the DKdV equation. The analytical solution of DKdV is also presented with time dependence. We discuss the profiles for velocity, amplitude, and time variations in solitons for the cases when all the electrons are spinning in the same direction and for the case when there is equal probability of electrons having spin up and spin down. We have found that the wave is unstable because of the collisions between neutral gas molecules and the charged plasmas particles in the presence of degenerate electrons.

Keywords:  degenerate plasma      collisions      spin-up      spin-down  
Received:  03 July 2018      Revised:  22 October 2018      Accepted manuscript online: 
PACS:  52.20.Fs (Electron collisions)  
  52.25.Ya (Neutrals in plasmas)  
  52.30.Ex (Two-fluid and multi-fluid plasmas)  
  52.35.-g (Waves, oscillations, and instabilities in plasmas and intense beams)  
Corresponding Authors:  S Hussain     E-mail:  sajjadtarlai_2@hotmail.com

Cite this article: 

S Hussain, H Hasnain, Mahnaz Q. Haseeb Damped electrostatic ion acoustic solitary wave structures in quantum plasmas with Bohm potential and spin effects 2019 Chin. Phys. B 28 015202

[1] Hussain S 2012 Chin. Phys. Lett. 29 065202
[2] Vladimirov S V and Yu M Y 1993 Phy. Rev. E 48 2136
[3] Vranjes J and Poedts S 2010 Phys. Plasmas 17 022104
[4] Melrose D B 2008 Quantum Plasma Dynamics: Unmagnetized Plasmas (New York: Springer)
[5] Shukla P K and Eliasson B 2010 Physics-Uspekhi 53 51
[6] Haas F 2005 Phys. Plasmas 12 062117
[7] Marklund M and Brodin G 2007 Phys. Rev. Lett. 98 025001
[8] Mushtaq A and Qamar A 2009 Phys. Plasmas 16 022301
[9] Mushtaq A and Vladimirov S V 2010 Phys. Plasmas 17 102310
[10] Bornath Th, Schlanges M, Hilse P and Kremp D 2001 Phys. Rev. E 64 26414
[11] Hilse P, Schlanges M, Bornath Th and Kremp D 2005 Phys. Rev. E 71 056408
[12] Moll M, Hilse P, Schlanges M, Bornath Th and Krainov V P 2010 J. Phys. B 43 135103
[13] Ghosh S and Chakrabarti N 2013 Phys. Rev. E 87 033102
[14] Ghosh S 2012 Europhys. Lett. 99 36002
[15] Ahmad S, Rahman A and Khan S A 2015 Astrophys. Space Sci. 16 358
[16] Shahid M, Melrose D B, Jamil M and Murtaza G 2012 Phys. Plasmas 19 112114
[17] Margulis A D and Margulis V I A 1987 Sov. Phys. JETP 66 1028
[18] Vranjes J, Petrovic D, Pandey P B and Poedts S 2008 Phys. Plasmas 15 072104
[19] Ahmad R, Gul N, Adnan M and Khattak F Y 2016 Phys. Plasmas 23 112112
[20] Washimi H and Tanuiti T 1966 Phys. Rev. Lett. 17 996
[21] Hussain S, Ur-Rehman H and Mahmood S 2104 Astrophys Space Sci. 351 573
[22] Mamun A A and Shukla P K 2002 Phys. Plasmas 9 1474
[23] Hussain S and Hasnain H 2017 Phys. Plasmas 24 032106
[24] Sultana S and Kourakis I 2015 Phys. Plasmas 22 102302
[25] Hussain S and Mahmood S 2017 Phys. Plasmas 24 102106
[26] Guo Z R, Yang Z Q, Yin B X and Sun M Z 2010 Chin. Phys. B 19 115203
[27] Shahid M, Melrose D B, Jamil M, and Murtaza G 2012 Phys. Plasmas 19 112114
[1] A modified heuristics-based model for simulating realistic pedestrian movement behavior
Wei-Li Wang(王维莉), Hai-Cheng Li(李海城), Jia-Yu Rong(戎加宇), Qin-Qin Fan(范勤勤), Xin Han(韩新), and Bei-Hua Cong(丛北华). Chin. Phys. B, 2022, 31(9): 094501.
[2] Modeling of beam ions loss and slowing down with Coulomb collisions in EAST
Yifeng Zheng(郑艺峰), Jianyuan Xiao(肖建元), Baolong Hao(郝保龙), Liqing Xu(徐立清), Yanpeng Wang(王彦鹏), Jiangshan Zheng(郑江山), and Ge Zhuang(庄革). Chin. Phys. B, 2022, 31(7): 075201.
[3] Discharge characteristic of very high frequency capacitively coupled argon plasma
Gui-Qin Yin(殷桂琴), Jing-Jing Wang(王兢婧), Shan-Shan Gao(高闪闪), Yong-Bo Jiang(姜永博), and Qiang-Hua Yuan(袁强华). Chin. Phys. B, 2021, 30(9): 095204.
[4] Production of dual species Bose-Einstein condensates of 39K and 87Rb
Cheng-Dong Mi(米成栋), Khan Sadiq Nawaz, Peng-Jun Wang(王鹏军), Liang-Chao Chen(陈良超), Zeng-Ming Meng(孟增明), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2021, 30(6): 063401.
[5] Interactions of ion acoustic multi-soliton and rogue wave with Bohm quantum potential in degenerate plasma
M S Alam, M G Hafez, M R Talukder, M Hossain Ali. Chin. Phys. B, 2017, 26(9): 095203.
[6] X-ray emission from 424-MeV/u C ions impacting on selected target
Xian-Ming Zhou(周贤明), Rui Cheng(程锐), Yu Lei(雷瑜), Yuan-Bo Sun(孙渊博), Yu-Yu Wang(王瑜玉), Xing Wang(王兴), Ge Xu(徐戈), Ce-Xiang Mei(梅策香), Xiao-An Zhang(张小安), Xi-Meng Chen(陈熙萌), Guo-Qing Xiao(肖国青), Yong-Tao Zhao(赵永涛). Chin. Phys. B, 2016, 25(2): 023402.
[7] Resonant charge transfer in slow Li+-Li(2s) collisions
Li Tie-Cheng (李铁成), Liu Chun-Hua (刘春华), Qu Yi-Zhi (屈一至), Liu Ling (刘玲), Wu Yong (吴勇), Wang Jian-Guo (王建国), Liebermann H. P., Buenker R. J.. Chin. Phys. B, 2015, 24(10): 103401.
[8] Comparison experiments of neon and helium buffer gases cooling in trapped 199Hg+ ions linear trap
Yang Yu-Na (杨玉娜), Liu Hao (柳浩), He Yue-Hong (何跃宏), Yang Zhi-Hui (杨智慧), Wang Man (汪漫), Chen Yi-He (陈义和), She Lei (佘磊), Li Jiao-Mei (李交美). Chin. Phys. B, 2014, 23(9): 093702.
[9] Second-order Born calculation of coplanar symmetric (e, 2e) process on Mg
Zhang Yong-Zhi (张永志), Wang Yang (王旸), Zhou Ya-Jun (周雅君). Chin. Phys. B, 2014, 23(6): 063402.
[10] Quantum electrodynamics in a laser and the electron laser collision
Zhang Qi-Ren (张启仁). Chin. Phys. B, 2014, 23(1): 010306.
[11] Triple differential cross section for single ionization of H2 by electron impact
Wang Yuan-Cheng (王远成), Liu Jun-Bo (刘俊伯), Ma Jia (马佳), Liu De-Jun (刘德军), Zhou Ya-Jun (周雅君). Chin. Phys. B, 2013, 22(7): 073403.
[12] Coherent nonlinear structures in dense electron-positron plasma
S. A. Khan, Z. Wazir. Chin. Phys. B, 2013, 22(2): 025201.
[13] Study of (e, 2e) process on potassium at 6 eV–60 eV above threshold in second-order Born approximation
Wang Yang (王旸), Zhou Ya-Jun (周雅君), Jiao Li-Guang (焦利光 ). Chin. Phys. B, 2012, 21(8): 083401.
[14] Nonradiative charge transfer in collisions of protons with rubidium atoms
Yan Ling-Ling(闫玲玲), Qu Yi-Zhi(屈一至), Liu Chun-Hua(刘春华), Zhang Yu(张宇), Wang Jian-Guo(王建国), and Buenker Robert J . Chin. Phys. B, 2012, 21(6): 063401.
[15] Rotational relaxation in ultracold He+BH collisions
Gong Ming-Yan(宫明艳), Xu Xiao-Tao(许小涛), and Feng Er-Yin(凤尔银) . Chin. Phys. B, 2011, 20(11): 113401.
No Suggested Reading articles found!