Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 125101    DOI: 10.1088/1674-1056/23/12/125101
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Modified 2CLJDQP model and the second virial coefficients for linear molecules

Zhang Ying (张颖), Wang Sheng (王升), He Mao-Gang (何茂刚)
Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  A modified form of 2CLJDQP potential model is proposed to calculate the second virial coefficients of two-center Lennard-Jones molecules. In the presented potential model, the potential parameters σ and ε are considered as the temperature-dependent parameters in the form of hyperbolical temperature function based on the theory of temperature-dependent potential parameters. With this modified model, the second virial coefficients of some homonuclear molecules (such as O2, Cl2, CH3CH3, and CF3CF3) and heteronuclear molecules (such as CO, NO, CH3F, CH3Cl, CH3CF3, CH3CHF2, and CF3CH2F) are calculated. Then the Lorentz–Berthelot mixing rule is modified with a temperature-dependent expression, and the second virial coefficients of the heteronuclear molecules (such as CH3F, CH3Cl, and CH3CF3) are calculated. Moreover, CO2 and N2O are also studied with the modified 3CLJDQP model. The calculated results from the modified 2CLJDQP model accord better with the experimental data than those from the original model. It is shown that the presented model improves the positive deviation in low temperature range and negative deviation in high temperature range. So the modified 2CLJDQP potential model with the temperature-dependent parameters can be employed satisfactorily in large temperature range.
Keywords:  potential function      temperature-dependent parameters      linear molecules      second virial coefficients  
Received:  13 January 2014      Revised:  03 June 2014      Accepted manuscript online: 
PACS:  51.30.+i (Thermodynamic properties, equations of state)  
  34.20.-b (Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)  
  51.10.+y (Kinetic and transport theory of gases)  
  34.20.-b (Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51106129) and the Fundamental Research Funds for the Central University, China (Grant No. XJTU-HRT-002).
Corresponding Authors:  He Mao-Gang     E-mail:  mghe@mail.xjtu.edu.cn

Cite this article: 

Zhang Ying (张颖), Wang Sheng (王升), He Mao-Gang (何茂刚) Modified 2CLJDQP model and the second virial coefficients for linear molecules 2014 Chin. Phys. B 23 125101

[1]Lucas K 2007 Molecular Models for Fluids (Cambridge: Cambridge University Press) pp. 266-283
[2]Chapman S and Cowling T G 1970 The Mathematical Theory of Non-uniform Gases, 3rd edn. (Cambridge: Cambridge University Press) pp. 226-276
[3]Boublik T, Nezbeda I and Hlavaty K 1980 Statistical Thermodynamics of Simple Liquids and Their Mixtures (Amsterdam: Elsevier Press) pp. 1-145
[4]Assael M J, Trusler J P and Tsolakis T F 1996 Thermophysical Properties of Fluids (London: Imperial College Press) pp. 37-46
[5]Poling B E, Prausnitz J M and O'connell J P 2001 The Properties of Gases and Liquids, 5th edn. (New York: McGraw- Hill Press) pp. 9.1-11.55
[6]Pai S J and Bae Y C 2013 Fluid Phase Equilib. 338 245
[7]Pai S J and Bae Y C 2012 Fluid Phase Equilib. 317 15
[8]Chiang K N, Chou C Y, Wu C J, Huang C J and Yew M C 2009 ICCES 9 130
[9]Lennard-Jones J E 1924 Proc. R. Soc. Lond. A 106 463
[10]Yeganegi S and Shadman M 2008 Chem. Phys. Lett. 451 209
[11]Tokumasu T and Kamijo K 2004 Superlattices Microstruct. 35 217
[12]Shukla K 1997 Fluid Phase Equilib. 27 1
[13]Kronome G, Kristof T, Liszi J and Szalai I 1999 Fluid Phase Equilib. 155 157
[14]Galbraith A L and Hall C K 2006 Fluid Phase Equilib. 241 175
[15]Fotouh K and Shukla K 1997 Fluid Phase Equilib. 1 35
[16]Takashi T, Taku O and Kenjiro K 2003 Transactions of the Japanese Society of Mechanical Engineers B69 1644
[17]Mecke M, Müller A and Winkelmann J 1997 Int. J. Thermophys. 18 683
[18]Kohlera F and Nhuab N V 1993 Mol. Phys. 80 795
[19]Kohler F, Quirke N and Perram J W 1979 J. Chem. Phys. 71 4128
[20]Galbraith A L and Hall C K 2006 Fluid Phase Equilib. 241 175
[21]Eslami H, Mozaffari F and Boushehri A 2001 Int. J. Therm. Sci. 40 999
[22]Vega C, McBride C and Menduina C 2002 Phys. Chem. Chem. Phys. 4 3000
[23]Meng L and Duan Y Y 2006 Mol. Phys. 104 2891
[24]Zarkova L 1996 Mol. Phys. 88 489
[25]Sweet R J and Steele A W 1967 J. Chem. Phys. 47 3022
[26]Kong C L 1970 J. Chem. Phys. 53 1516
[27]Murthy C S, Singer K and McDonald I R 1981 Mol. Phys. 44 135
[28]Santisa A D and Frattinia D R 1987 Mol. Phys. 60 21
[29]Meng L 2006 "Theorical and Experimental Study on the Virial Coefficients of Fluids" (Ph. D. Thesis) (Beijing: Tsinghua University) (in Chinese)
[30]Hu Y, Liu G J, Xu Y N and Tan Z M 1990 Applied Statistical Mechanics-Basic for Thermal Physical Properties of Fluid (Beijing: Chemical Industry Press) pp. 59-67 (in Chinese)
[31]Kriebel C, Mecke M, Winkelmann J, Vrabec J and Fischer J 1998 Fluid Phase Equilib. 142 15
[32]Huang Y, Vrabec J and Hasse H 2009 Fluid Phase Equilib. 287 62
[33]Boushehri A, Mason E A and Kestin J 1986 Int. J. Thermophys. 7 1115
[34]Stefanov B 1992 J. Phys. B: At. Mol. Opt. Phys. 25 4519
[35]Hohm U, Zarkova L and Damyanova M 2006 Int. J. Thermophys. 27 1725
[36]Al-Matar A K, Tobgy A H and Suleiman I A 2008 Mol. Simul. 34 289
[37]Zarkova L and Pirgov P 1995 J. Phys. B: At. Mol. Opt. Phys. 28 4269
[38]Hirschfelder J O, Curtiss C F and Bird R B 1954 Molecular Theory of Gases and Liquids (New York: Wiley Press) p. 22-25
[39]Hohm U and Zarkova L 2004 Chem. Phys. 298 195
[40]Damyanova M, Zarkova L and Hohm U 2009 Int. J. Thermophys. 30 1165
[41]Zarkova L and Hohm U 2009 J. Chem. Eng. Data 54 1648
[42]Wang S, Zhang Y and He M G 2012 J. Eng. Thermophys. 33 199
[43]Matsumoto M and Nishimura T 1998 ACM Trans. Mod. Comput. Simul. 8 3
[44]Contoy H 1967 J. Chem. Phys. 47 5307
[45]Nezbeda I, Kolafa J and Labik S 1989 Czech. J. Phys. B39 65
[46]Delhommelle J and Millié P 2001 Mol. Phys. 99 619
[47]Tsonopoulos C 1974 AIChE J. 20 263
[48]Tsonopoulos C 1975 AIChE J. 21 827
[49]Weber L A 1994 Int. J. Thermophys. 15 461
[50]Meng L, Duan Y Y and Li L 2004 Fluid Phase Equiliria 226 109
[1] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[2] Lyapunov function as potential function:A dynamical equivalence
Yuan Ruo-Shi (袁若石), Ma Yi-An (马易安), Yuan Bo (苑波), Ao Ping (敖平). Chin. Phys. B, 2014, 23(1): 010505.
[3] Molecular properties and potential energy function model of BH under external electric field
Wu Dong-Lan (伍冬兰), Tan Bin (谭彬), Wan Hui-Jun (万慧军), Zhang Xin-Qin (张新琴), Xie An-Dong (谢安东). Chin. Phys. B, 2013, 22(12): 123101.
[4] Linear theory of a dielectric-loaded rectangular Cerenkov maser with a sheet electron beam
Chen Ye (陈晔), Zhao Ding (赵鼎), Liu Wen-Xin (刘文鑫), Wang Yong (王勇), Wan Xiao-Sheng (万晓声). Chin. Phys. B, 2012, 21(10): 104103.
[5] Effects of potential functions on stochastic resonance
Li Jian-Long(李建龙) and Zeng Ling-Zao(曾令藻). Chin. Phys. B, 2011, 20(1): 010503.
[6] Spin polarization effect for Cr2 molecule
Yan Shi-Ying(阎世英). Chin. Phys. B, 2008, 17(8): 2925-2931.
[7] Analytical potential energy function for the electronic states 2П1/2 and 2П3/2 of O2x(x=+1, --1)
Lü Bing(吕兵), Linghu Rong-Feng(令狐荣锋), Zhou Xun(周勋), Yang Xiang-Dong(杨向东), Zhu Zheng-He(朱正和), and Cheng Xin-Lu(程新路) . Chin. Phys. B, 2008, 17(5): 1738-1742.
[8] Spin polarization effect of Ni2 molecule
Yan Shi-Ying (阎世英), Zhu Zheng-He (朱正和). Chin. Phys. B, 2008, 17(12): 4498-4503.
[9] Spin polarization effect for Mn2 molecule
Yan Shi-Ying(阎世英) and Xu Guo-Liang(徐国亮). Chin. Phys. B, 2007, 16(3): 686-691.
[10] Spin polarization effect for Co2 molecule
Yan Shi-Ying(阎世英) and Bao Wen-Sheng(鲍文胜) . Chin. Phys. B, 2007, 16(12): 3675-3680.
[11] Spin polarization effect for Fe2 molecule
Yan Shi-Ying (阎世英), Zhu Zheng-He (朱正和). Chin. Phys. B, 2006, 15(7): 1517-1521.
[12] Spin polarization effect for molecule Ta2
Xie An-Dong (谢安东). Chin. Phys. B, 2006, 15(2): 324-328.
[13] Molecular dynamics simulation on mechanicalproperty of carbon nanotube torsional deformation
Chen Ming-Jun(陈明君), Liang Ying-Chun(梁迎春), Li Hong-Zhu(李洪珠), and Li Dan(李旦). Chin. Phys. B, 2006, 15(11): 2676-2681.
[14] Spin polarization effect for Os2 molecule
Xie An-Dong (谢安东), Yan Shi-Ying (阎世英), Zhu Zheng-He (朱正和), Fu Yi-Bei (傅依备). Chin. Phys. B, 2005, 14(9): 1808-1812.
[15] Ab initio calculation on the analytic potential energy functions for the state a3Σ+u and the state b3$\Pi$u of spin-aligned trimer 7Li2
Shi De-Heng (施德恒), Sun Jin-Feng (孙金锋), Yang Xiang-Dong (杨向东), Zhu Zun-Lue (朱遵略), Liu Yu-Fang (刘玉芳). Chin. Phys. B, 2005, 14(8): 1566-1570.
No Suggested Reading articles found!