Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 120303    DOI: 10.1088/1674-1056/23/12/120303
GENERAL Prev   Next  

Approximate solutions of Klein—Gordon equation with improved Manning—Rosen potential in D-dimensions using SUSYQM

A. N. Ikota, H. Hassanabadic, H. P. Obonga, Y. E. Chad Umorena, C. N. Isonguyob, B. H. Yazarlooc
a Department of Physics, University of Port Harcourt, Choba P M B5323 Port Harcourt, Nigeria;
b Theoretical Physics Group, Department of Physics, University of Uyo-Nigeria, Nigeria;
c Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
Abstract  In this paper, we present solutions of the Klein–Gordon equation for the improved Manning–Rosen potential for arbitrary l state in d-dimensions using the supersymmetric shape invariance method. We obtained the energy levels and the corresponding wave functions expressed in terms of Jacobi polynomial in a closed form for arbitrary l state. We also calculate the oscillator strength for the potential.
Keywords:  Klein–Gordon equation      improved Manning–Rosen potential      supersymmetric quantum mechanics (SUSYQM)  
Received:  04 May 2014      Revised:  29 June 2014      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Pm (Relativistic wave equations)  
  03.65.Ca (Formalism)  
Corresponding Authors:  A. N. Ikot     E-mail:  ndemikotphysics@gmail.com

Cite this article: 

A. N. Ikot, H. Hassanabadi, H. P. Obong, Y. E. Chad Umoren, C. N. Isonguyo, B. H. Yazarloo Approximate solutions of Klein—Gordon equation with improved Manning—Rosen potential in D-dimensions using SUSYQM 2014 Chin. Phys. B 23 120303

[28] Hibbert A 1975 Rep. Prog. Phys. 38 1217
[1] Maning M R and Rosen N 1933 Phys. Rev. 44 953
[29] Hassanabadi H, Yazarloo B H and Lu L L 2012 Chin. Phys. Lett. 29 020303
[2] Liu J Y, Zhang G D and Jia C S 2013 Phys. Lett. A 377 1444
[3] Wang P Q, Zhang L H, Jia C S and Liu J Y 2012 J. Mol. Spectrosc. 274 5
[4] Jia C S, Chen T and He S 2013 Phys. Lett. A 377 682
[5] Hu X T, Zhang L H and Jia C S 2014 J. Mol. Spectrosc. 297 21
[6] Chen X Y, Chen T and Jia C S 2014 Eur. Phys. J. Plus 129 75
[7] Chen T, Lin S R and Jia C S 2013 Eur. Phys. J. Plus 128 69
[8] Dong S H and Garcia-Ravelo J 2007 Phys. Scr. A 75 307
[9] Ikhdair S M and Sever R 2008 Ann. Phys. Lpz 17 697
[10] Cu X Y and Dong S H 2011 J. Math. Chem. 49 2053
[11] Qiang W C and Dong S H 2009 Phys. Scr. 79 045004
[12] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Birkhauser: Basel)
[13] Jia C S, Li X P and Zhang L H 2012 Few-Body Syst. 52 11
[14] Liu J Y, Du J F and Jia C S 2013 Eur. Phys. J. Plus 128 139
[15] Mai Z Q, Gonzalez-Cisneros A, Xu B W and Dong S H 2007 Phys. Lett. A 371 180
[16] Ciftci H, Hall R L and Saad N 2005 J. Phys. A: Math. Gen. 38 1147
[17] Dong S H 2007 Factorization Method in Quantum Mechanics (Netheland: Springer)
[18] Landau L D and Lifshitz E M 1977 Quantum Mechnaics, Non-Relativistic Theory (New York: Pergamon)
[19] Greene R L and Aldrich C 1976 Phys. Rev. A 14 2363
[20] Dong S, Hun G H and Dong S H 2013 Int. J. Mod. Phys. E 22 1350036
[21] Chen Z Y, Li M and Jia C S 2009 Mod. Phys. Lett. A 24 1863
[22] Hassanabadi H, Zarrinkamar S and Rahimov H 2011 Commun. Theor. Phys. 56 423
[23] Hassanabadi H and Yazarloo B H 2013 Indian J. Phys. 87 1017
[24] Dong S H 2011 Wave Equations in Higher Dimensions (Dordrecht: Springer)
[25] Liu L L, Yazarloo B H, Zarrinkamar S, Liu G and Hassanabadi H 2012 Few-Body Syst. 53 573
[26] Jia C S, Chen T and Cui L G 2009 Phys. Lett. A 373 1621
[27] Hassanabadi H and Yazarloo B H 2013 Chin. Phys. C 37 123101
[28] Hibbert A 1975 Rep. Prog. Phys. 38 1217
[29] Hassanabadi H, Yazarloo B H and Lu L L 2012 Chin. Phys. Lett. 29 020303
[1] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[2] Wave function collapses and 1/n energy spectrum induced by a Coulomb potential in a one-dimensional flat band system
Yi-Cai Zhang(张义财). Chin. Phys. B, 2022, 31(5): 050311.
[3] Exact solutions of the Schrödinger equation for a class of hyperbolic potential well
Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(4): 040301.
[4] Geometric quantities of lower doubly excited bound states of helium
Chengdong Zhou(周成栋), Yuewu Yu(余岳武), Sanjiang Yang(杨三江), and Haoxue Qiao(乔豪学). Chin. Phys. B, 2022, 31(3): 030301.
[5] Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients
Ying Yang(杨颖), Yu-Xiao Gao(高玉晓), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2021, 30(11): 110202.
[6] Approximate analytical solutions and mean energies of stationary Schrödinger equation for general molecular potential
Eyube E S, Rawen B O, and Ibrahim N. Chin. Phys. B, 2021, 30(7): 070301.
[7] Thermodynamic properties of massless Dirac-Weyl fermions under the generalized uncertainty principle
Guang-Hua Xiong(熊光华), Chao-Yun Long(龙超云), and He Su(苏贺). Chin. Phys. B, 2021, 30(7): 070302.
[8] Wave packet dynamics of nonlinear Gazeau-Klauder coherent states of a position-dependent mass system in a Coulomb-like potential
Faustin Blaise Migueu, Mercel Vubangsi, Martin Tchoffo, and Lukong Cornelius Fai. Chin. Phys. B, 2021, 30(6): 060309.
[9] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[10] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[11] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[12] Simulation of anyons by cold atoms with induced electric dipole moment
Jian Jing(荆坚), Yao-Yao Ma(马瑶瑶), Qiu-Yue Zhang(张秋月), Qing Wang(王青), Shi-Hai Dong(董世海). Chin. Phys. B, 2020, 29(8): 080303.
[13] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[14] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[15] Experimental investigation of the fluctuations in nonchaotic scattering in microwave billiards
Runzu Zhang(张润祖), Weihua Zhang(张为华), Barbara Dietz, Guozhi Chai(柴国志), Liang Huang(黄亮). Chin. Phys. B, 2019, 28(10): 100502.
No Suggested Reading articles found!