Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 107804    DOI: 10.1088/1674-1056/23/10/107804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Pressure-dependent terahertz optical characterization of heptafluoropropane

Leng Wen-Xiu (冷文秀)a b, Ge Li-Na (戈立娜)c, Xu Shan-Sen (徐山森)d, Zhan Hong-Lei (詹洪磊)c, Zhao Kun (赵昆)a b c
a State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China;
b Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, China Petroleum and Chemical Industry Federation (CPCIF), Beijing 100723, China;
c Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, China;
d Xi'an Polytechnic University, Xi'an 710048, China
Abstract  Heptafluoropropane (HFP), as the best alternative to halon fire-suppression agents, is now a widely used fire extinguishing agent. The current studies of HFP, concentrating on the extinguishing mechanisms of flames and decomposition products, in general deal with the destructive and high temperature cases. In this paper, terahertz time-domain spectra are used to characterize HFP at different pressures. Optical parameters of HFP, such as absorption coefficient, refractive index, and relative permittivity, and their relationship with concentration of samples, are discussed. The absorption peak of HFP at 0.3 THz depends strongly on the applied pressure, and the corresponding parameters increase almost linearly with increasing HFP concentration. The present study lays a foundation for future extensive applications.
Keywords:  optical constant      heptafluoropropane      terahertz      pressure  
Received:  11 July 2014      Revised:  20 August 2014      Accepted manuscript online: 
PACS:  78.47.D- (Time resolved spectroscopy (>1 psec))  
  42.87.-d (Optical testing techniques)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Key Basic Research Program of China (Grant No. 2014CB744300), the Specially Funded Program on National Key Scientific Instruments and Equipment Development, China (Grant No. 2012YQ140005), and the Beijing Natural Science Foundation (Grant No. 4122064).
Corresponding Authors:  Zhao Kun     E-mail:  zhk@cup.edu.cn
About author:  78.47.D-; 42.87.-d; 78.20.Ci

Cite this article: 

Leng Wen-Xiu (冷文秀), Ge Li-Na (戈立娜), Xu Shan-Sen (徐山森), Zhan Hong-Lei (詹洪磊), Zhao Kun (赵昆) Pressure-dependent terahertz optical characterization of heptafluoropropane 2014 Chin. Phys. B 23 107804

[1]Miziolek A W and Tsang W 1995 ACS Symposium Series (Washington DC: American Chemical Society) p. 388
[2]Sheinson R S and Penner-Hahn J E 1989 Fire Safety J. 15 437
[3]Nyden M R and Linteris G T 1994 J. Res. Natl. Inst. Stan. 861 467
[4]Durlka S K and Biswas P 1998 Environ. Sci. Technol. 32 2301
[5]Wang J, Levendis Y A and Riegter H 2001 Environ. Sci. Technol. 35 3541
[6]Rossi M, Camino G and Luda M 2001 Polym. Degrad. Stabil. 74 507
[7]Wirbser H, Bräuning G, Gürtner J and Ernst G 1992 J. Chem. Thermodyn. 24 761
[8]Scalabrin G, Piazza L and Richon D 2002 Fluid Phase Equilibr. 199 33
[9]Defibaugh D R and Moldover M R 1997 J. Chem. Eng. Data 42 160
[10]Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[11]Westmoreland P R 1994 Twenty-Fifth Symposium (International) on Combustion 1505
[12]Burgess Jr 1996 Prog. Energy Combust. Sci. 21 453
[13]The current NIST HFC mechanism may be downloaded from
[14]Lucarini V and Saarinen J J 2005 Kramers-Kronig Relations in Optical Materials Research (Berlin: Springer)
[15]Zhao H, Zhao K and Bao R M 2012 J. Infrared Milli. Terahz Waves 33 522
[16]Watanabe Y 2004 Opt. Commun. 234 125
[17]Chen Y 2011 J. Appl. Phys. 110 044902
[18]Choi D H 2012 J. Chem. Phys. 137 175101
[19]Fukunaga K and Picollo M 2010 Appl. Phys. A 100 591
[20]Jiang C 2014 Energ. Fuels 28 483
[21]Jin W J 2013 Appl. Geophys. 10 496
[22]Bao R M 2013 Sci. China: Phys. Mech. Astron. 56 1603
[23]Zhao H 2012 Sci. China: Phys. Mech. Astron. 55 195
[24]Tian L 2009 Sci. China: Series G: Phys. Mech. Astron. 39 1938
[25]Naftaly M 2007 Proc. IEEE 95 1658
[26]Exter M V 1989 Opt. Lett. 14 1128
[27]Wang H and Zhao G Z 2010 Acta Photonica Sinica 39 1185
[28]Liu X M and Shao M 2004 Acta Scientiae Circumstantiae 24 185
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[3] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[6] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[7] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[8] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[9] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[10] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[11] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[12] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[13] Regulation of the intermittent release of giant unilamellar vesicles under osmotic pressure
Qi Zhou(周琪), Ping Wang(王平), Bei-Bei Ma(马贝贝), Zhong-Ying Jiang(蒋中英), and Tao Zhu(朱涛). Chin. Phys. B, 2022, 31(9): 098701.
[14] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[15] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
No Suggested Reading articles found!