Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 100304    DOI: 10.1088/1674-1056/23/10/100304
GENERAL Prev   Next  

Security of biased BB84 quantum key distribution with finite resource

Zhao Liang-Yuan (赵良圆)a b, Li Hong-Wei (李宏伟)a b c, Yin Zhen-Qiang (银振强)a b, Chen Wei (陈巍)a b, You Juan (尤娟)a, Han Zheng-Fu (韩正甫)a b
a Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
b Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
c Zhengzhou Information Science and Technology Institute, Zhengzhou 450004, China
Abstract  In the original BB84 quantum key distribution protocol, the states are prepared and measured randomly, which lose the unmatched detection results. To improve the sifting efficiency, biased bases selection BB84 protocol is proposed. Meanwhile, a practical quantum key distribution protocol can only transmit a finite number of signals, resulting in keys of finite length. The previous techniques for finite-key analysis focus mainly on the statistical fluctuations of the error rates and yields of the qubits. However, the prior choice probabilities of the two bases also have fluctuations by taking into account the finite-size effect. In this paper, we discuss the security of biased decoy state BB84 protocol with finite resources by considering all of the statistical fluctuations. The results can be directly used in the experimental realizations.
Keywords:  biased basis selection      security bound      quantum key distribution  
Received:  17 April 2014      Revised:  03 July 2014      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
Fund: Project supported by the the National Natural Science Foundation of China (Grant Nos. 61101137, 61201239, 61205118, and 11304397) and the China Postdoctoral Science Foundation. (Grant No. 2013M540514).
Corresponding Authors:  Li Hong-Wei,Yin Zhen-Qiang     E-mail:  lihw@mail.ustc.edu.cn;yinzheqi@mail.ustc.edu.cn
About author:  03.67.Dd

Cite this article: 

Zhao Liang-Yuan (赵良圆), Li Hong-Wei (李宏伟), Yin Zhen-Qiang (银振强), Chen Wei (陈巍), You Juan (尤娟), Han Zheng-Fu (韩正甫) Security of biased BB84 quantum key distribution with finite resource 2014 Chin. Phys. B 23 100304

[1]Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Bangalore: IEEE) p. 175
[2]Ekert A K 1991 Phys. Rev. Lett. 67 661
[3]Lo H K and Chau H F 1999 Science 283 2050
[4]Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[5]Mayers D 2001 J. ACM 48 351
[6]Gottesman D, Lo H K, Lütkenhaus N and Preskill J 2004 arXiv preprint quant-ph/0212066
[7]Renner R, Gisin N and Kraus B 2005 Phys. Rev. A 72 012332
[8]Chen W, Han Z F, Zhang T, Wen H, Yin Z Q, Xu F X, Wu Q L, Liu Y, Zhang Y, Mo X F, Gui Y Z, Wei G and Guo G C 2009 IEEE Photon. Technol. Lett. 21 575
[9]Wan S, Chen W, Yin Z Q, Zhang Y, Zhang T, Li H W, Xu F X, Zhou Z, Yang Y, Huang D J, Zhang L J, Li F Y, Liu D, Wang Y G, Guo G C and Han Z F 2010 Opt. Lett. 35 2454
[10]Gisin N, Ribordy G, Tittel W and Zbinden H 2001 Rev. Mod. Phys. 74 145
[11]Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dusek M, Lutkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[12]Lo H K, Chau H F and Ardehali M 2005 J. Cryptol. 18 133
[13]Lütkenhaus N and Jahma M 2002 New J. Phys. 4 44
[14]Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[15]Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[16]Wang X B 2005 Phys. Rev. Lett. 94 230503
[17]Wei Z C, Wang W L, Zhang Z, Gao M, Ma Z and Ma X F 2013 Sci. Rep. 3 2453
[18]Mayers D 1996 Advances in Cryptology-CRYPTO'96 (Berlin: Springer) p. 343
[19]Inamori H, Lütkenhaus N and Mayers D 2007 Eur. Phys. J. D 41 599
[20]Li H W, Chen W, Huang J Z, Yao Y, Liu D, Li F Y, Wang S, Yin Z Q, He D Y, Zhou Z, Li Y H, Yu N H and Han Z F 2012 Sci. Sin.: Phys. Mech. Astron. 42 1237
[21]Hayashi M 2007 Phys. Rev. A 76 012329
[22]Scarani V and Renner R 2008 Phys. Rev. Lett. 100 200501
[23]Scarani V and Renner R 2008 Theory of Quantum Computation, Communication,and Cryptography (Berlin: Springer-Verlag) p. 83
[24]Cai R Y Q and Scarani V 2009 New J. Phys. 11 045024
[25]Li H W, Zhao Y B, Yin Z Q, Wang S, Han Z F, Bao W S and Guo G C 2009 Opt. Commun. 282 4162
[26]Cover T M and Thomas J A 2012 Elements of Information Theory (New York: John Wiley & Sons) p. 411
[27]Ma X F, Fung C H F, Boileau J C and Chau H F 2011 Computers & Security 30 172
[28]Fung C H F, Ma X F and Chau H F 2010 Phys. Rev. A 81 012318
[29]Ma X F, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[30]Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys. Lett. 84 3762
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[7] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[13] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!