|
|
Security of biased BB84 quantum key distribution with finite resource |
Zhao Liang-Yuan (赵良圆)a b, Li Hong-Wei (李宏伟)a b c, Yin Zhen-Qiang (银振强)a b, Chen Wei (陈巍)a b, You Juan (尤娟)a, Han Zheng-Fu (韩正甫)a b |
a Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
b Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
c Zhengzhou Information Science and Technology Institute, Zhengzhou 450004, China |
|
|
Abstract In the original BB84 quantum key distribution protocol, the states are prepared and measured randomly, which lose the unmatched detection results. To improve the sifting efficiency, biased bases selection BB84 protocol is proposed. Meanwhile, a practical quantum key distribution protocol can only transmit a finite number of signals, resulting in keys of finite length. The previous techniques for finite-key analysis focus mainly on the statistical fluctuations of the error rates and yields of the qubits. However, the prior choice probabilities of the two bases also have fluctuations by taking into account the finite-size effect. In this paper, we discuss the security of biased decoy state BB84 protocol with finite resources by considering all of the statistical fluctuations. The results can be directly used in the experimental realizations.
|
Received: 17 April 2014
Revised: 03 July 2014
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
Fund: Project supported by the the National Natural Science Foundation of China (Grant Nos. 61101137, 61201239, 61205118, and 11304397) and the China Postdoctoral Science Foundation. (Grant No. 2013M540514). |
Corresponding Authors:
Li Hong-Wei,Yin Zhen-Qiang
E-mail: lihw@mail.ustc.edu.cn;yinzheqi@mail.ustc.edu.cn
|
About author: 03.67.Dd |
Cite this article:
Zhao Liang-Yuan (赵良圆), Li Hong-Wei (李宏伟), Yin Zhen-Qiang (银振强), Chen Wei (陈巍), You Juan (尤娟), Han Zheng-Fu (韩正甫) Security of biased BB84 quantum key distribution with finite resource 2014 Chin. Phys. B 23 100304
|
|
| [1] | Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Bangalore: IEEE) p. 175
|
|
| [2] | Ekert A K 1991 Phys. Rev. Lett. 67 661
|
|
| [3] | Lo H K and Chau H F 1999 Science 283 2050
|
|
| [4] | Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
|
|
| [5] | Mayers D 2001 J. ACM 48 351
|
|
| [6] | Gottesman D, Lo H K, Lütkenhaus N and Preskill J 2004 arXiv preprint quant-ph/0212066
|
|
| [7] | Renner R, Gisin N and Kraus B 2005 Phys. Rev. A 72 012332
|
|
| [8] | Chen W, Han Z F, Zhang T, Wen H, Yin Z Q, Xu F X, Wu Q L, Liu Y, Zhang Y, Mo X F, Gui Y Z, Wei G and Guo G C 2009 IEEE Photon. Technol. Lett. 21 575
|
|
| [9] | Wan S, Chen W, Yin Z Q, Zhang Y, Zhang T, Li H W, Xu F X, Zhou Z, Yang Y, Huang D J, Zhang L J, Li F Y, Liu D, Wang Y G, Guo G C and Han Z F 2010 Opt. Lett. 35 2454
|
|
| [10] | Gisin N, Ribordy G, Tittel W and Zbinden H 2001 Rev. Mod. Phys. 74 145
|
|
| [11] | Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dusek M, Lutkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
|
|
| [12] | Lo H K, Chau H F and Ardehali M 2005 J. Cryptol. 18 133
|
|
| [13] | Lütkenhaus N and Jahma M 2002 New J. Phys. 4 44
|
|
| [14] | Hwang W Y 2003 Phys. Rev. Lett. 91 057901
|
|
| [15] | Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
|
|
| [16] | Wang X B 2005 Phys. Rev. Lett. 94 230503
|
|
| [17] | Wei Z C, Wang W L, Zhang Z, Gao M, Ma Z and Ma X F 2013 Sci. Rep. 3 2453
|
|
| [18] | Mayers D 1996 Advances in Cryptology-CRYPTO'96 (Berlin: Springer) p. 343
|
|
| [19] | Inamori H, Lütkenhaus N and Mayers D 2007 Eur. Phys. J. D 41 599
|
|
| [20] | Li H W, Chen W, Huang J Z, Yao Y, Liu D, Li F Y, Wang S, Yin Z Q, He D Y, Zhou Z, Li Y H, Yu N H and Han Z F 2012 Sci. Sin.: Phys. Mech. Astron. 42 1237
|
|
| [21] | Hayashi M 2007 Phys. Rev. A 76 012329
|
|
| [22] | Scarani V and Renner R 2008 Phys. Rev. Lett. 100 200501
|
|
| [23] | Scarani V and Renner R 2008 Theory of Quantum Computation, Communication,and Cryptography (Berlin: Springer-Verlag) p. 83
|
|
| [24] | Cai R Y Q and Scarani V 2009 New J. Phys. 11 045024
|
|
| [25] | Li H W, Zhao Y B, Yin Z Q, Wang S, Han Z F, Bao W S and Guo G C 2009 Opt. Commun. 282 4162
|
|
| [26] | Cover T M and Thomas J A 2012 Elements of Information Theory (New York: John Wiley & Sons) p. 411
|
|
| [27] | Ma X F, Fung C H F, Boileau J C and Chau H F 2011 Computers & Security 30 172
|
|
| [28] | Fung C H F, Ma X F and Chau H F 2010 Phys. Rev. A 81 012318
|
|
| [29] | Ma X F, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
|
|
| [30] | Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys. Lett. 84 3762
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|