Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 010501    DOI: 10.1088/1674-1056/23/1/010501
GENERAL Prev   Next  

Bifurcation analysis of the logistic map via two periodic impulsive forces

Jiang Hai-Bo (姜海波), Li Tao (李涛), Zeng Xiao-Liang (曾小亮), Zhang Li-Ping (张丽萍)
School of Mathematics, Yancheng Teachers University, Yancheng 224002, China
Abstract  The complex dynamics of the logistic map via two periodic impulsive forces is investigated in this paper. The influences of the system parameter and the impulsive forces on the dynamics of the system are studied respectively. With the parameter varying, the system produces the phenomenon such as periodic solutions, chaotic solutions, and chaotic crisis. Furthermore, the system can evolve to chaos by a cascading of period-doubling bifurcations. The Poincaré map of the logistic map via two periodic impulsive forces is constructed and its bifurcation is analyzed. Finally, the Floquet theory is extended to explore the bifurcation mechanism for the periodic solutions of this non-smooth map.
Keywords:  logistic map      impulse      periodic solutions      bifurcation mechanism  
Received:  15 May 2013      Revised:  07 June 2013      Accepted manuscript online: 
PACS:  05.45.Ac (Low-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11202180, 61273106, and 11171290), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK2010292 and BK2010293), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 10KJB510026), the National Training Programs of Innovation and Entrepreneurship for Undergraduates, China (Grant No. 201210324009), and the Training Programs of Practice and Innovation for Jiangsu College Students, China (Grant No. 2012JSSPITP2378).
Corresponding Authors:  Jiang Hai-Bo     E-mail:  yctcjhb@gmail.com

Cite this article: 

Jiang Hai-Bo (姜海波), Li Tao (李涛), Zeng Xiao-Liang (曾小亮), Zhang Li-Ping (张丽萍) Bifurcation analysis of the logistic map via two periodic impulsive forces 2014 Chin. Phys. B 23 010501

[1] May R M 1976 Nature 261 459
[2] Singh N and Sinha A 2010 Opt. Lasers Eng. 48 398
[3] Stein R R and Isambert H 2011 Phys. Rev. E 84 051904
[4] Nagatani T and Sugiyama N 2013 Physica A 392 851
[5] Bainov D D and Simeonov P S 1989 Systems with Impulse Effect: Stability, Theory and Applications (New York: Halsted Press)
[6] Lakshmikantham V, Bainov D D and Simeonov P S 1989 Theory of Impulsive Differential Equations (Singapore: World Scientific)
[7] Yang T 2001 Impulsive Control Theory (Berlin: Springer)
[8] Jiang H B, Yu J J and Zhou C G 2008 IET Control Theory Appl. 2 654
[9] Zhang L P, Jiang H B and Bi Q S 2010 Chin. Phys. B 19 010507
[10] Qian L N, Lu Q S, Meng Q G and Feng Z S 2010 J. Math. Anal. Appl. 363 345
[11] Wang L, Zhao R, Xu W and Zhang Y 2011 Chin. Phys. B 20 020506
[12] Wang X Y, Zhang Y L, Lin D and Zhang N 2011 Chin. Phys. B 20 030506
[13] Zhou J, Wu Q J and Xiang L 2012 Nonlinear Dyn. 69 1393
[14] Jin L, Lu Q S and Wang Q 2004 Chin. J. Appl. Mech. 21 21
[15] Lu Q S and Jin L 2005 Acta Mech. Solida Sin. 26 132
[16] Lenci S and Rega G 2000 Chaos Soliton. Fract. 11 2453
[17] Jiang G R and Yang Q G 2008 Chin. Phys. B 17 4114
[18] Jiang G R, Xu B G and Yang Q G 2009 Chin. Phys. B 18 5235
[19] Zhang S W and Chen L S 2005 Chaos Soliton. Fract. 24 73
[20] Georgescu P, Zhang H and Chen L S 2008 Appl. Math. Comput. 202 675
[21] Jiang H B, Zhang L P, Chen Z Y and Bi Q S 2012 Acta Phys. Sin. 61 080505 (in Chinese)
[22] Gao S J and Chen L S 2005 Chaos Soliton. Fract. 23 519
[23] Liu F, Guan Z H and Wang H O 2010 Nonlinear Anal. Real World Appl. 11 1491
[24] Jiang H B, Li T, Zeng X L and Zhang L P Acta Phys. Sin. 62 120508 (in Chinese)
[25] Wang W M, Wang X Q and Lin Y Z 2008 Chaos Soliton. Fract. 37 1427
[26] Chen Y P and Liu Z J 2009 Chaos Soliton. Fract. 39 1698
[27] Ma Z J, Yang J and Jiang G R 2010 Appl. Math. Comput. 217 3453
[28] Georgescua P and Zhang H 2012 BioSystems 110 162
[29] Kawakami H 1984 IEEE Trans. Circ. Syst. 31 248
[1] Dynamical behavior and optimal impulse control analysis of a stochastic rumor spreading model
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2022, 31(11): 110204.
[2] Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control
Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Chin. Phys. B, 2021, 30(12): 120512.
[3] Solid-like ablation propulsion generation in nanosecond pulsed laser interaction with carbon-doped glycerol
Zhi-Yuan Zheng(郑志远), Si-Qi Zhang(张思齐), Tian Liang(梁田), Jing Qi(齐婧), Wei-Chong Tang(汤唯冲), Ke Xiao(肖珂), Lu Gao(高禄), Hua Gao(高华), Zi-Li Zhang(张自力). Chin. Phys. B, 2017, 26(3): 035203.
[4] A self-cited pixel summation based image encryption algorithm
Guo-Dong Ye(叶国栋), Xiao-Ling Huang(黄小玲), Leo Yu Zhang(张愉), Zheng-Xia Wang(王政霞). Chin. Phys. B, 2017, 26(1): 010501.
[5] Bursting phenomena as well as the bifurcation mechanism in a coupled BVP oscillator with periodic excitation
Xiaofang Zhang(张晓芳), Lei Wu(吴磊), Qinsheng Bi(毕勤胜). Chin. Phys. B, 2016, 25(7): 070501.
[6] Complex dynamics analysis of impulsively coupled Duffing oscillators with ring structure
Jiang Hai-Bo (姜海波), Zhang Li-Ping (张丽萍), Yu Jian-Jiang (于建江). Chin. Phys. B, 2015, 24(2): 020502.
[7] A fast image encryption algorithm based on only blocks in cipher text
Wang Xing-Yuan (王兴元), Wang Qian (王倩). Chin. Phys. B, 2014, 23(3): 030503.
[8] Cluster synchronization of uncertain complex networks with desynchronizing impulse
Cai Guo-Liang (蔡国梁), Jiang Sheng-Qin (姜胜芹), Cai Shui-Ming (蔡水明), Tian Li-Xin (田立新). Chin. Phys. B, 2014, 23(12): 120505.
[9] Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode
Zhang Wei-Ya (张玮亚), Li Yong-Li (李永丽), Chang Xiao-Yong (常晓勇), Wang Nan (王楠). Chin. Phys. B, 2013, 22(9): 098401.
[10] Forced bursting and transition mechanism in CO oxidation with three time scales
Li Xiang-Hong (李向红), Bi Qin-Sheng (毕勤胜). Chin. Phys. B, 2013, 22(4): 040504.
[11] Bursting oscillation in CO oxidation with small excitation and the enveloping slow-fast analysis method
Li Xiang-Hong(李向红) and Bi Qin-Sheng(毕勤胜) . Chin. Phys. B, 2012, 21(6): 060505.
[12] Dynamical behaviors of a system with switches between the Rössler oscillator and Chua circuits
Zhang Chun (张春), Yu Yue (余跃), Han Xiu-Jing (韩修静), Bi Qin-Sheng (毕勤胜). Chin. Phys. B, 2012, 21(10): 100501.
[13] The periodic solutions for coupled integrable dispersionless equations
Liu Shi-Kuo(刘式适),Zhao Qiang(赵强),and Liu Shi-Da(刘式达) . Chin. Phys. B, 2011, 20(4): 040202.
[14] Symmetric bursting behaviour in non-smooth Chua's circuit
Ji Ying(季颖) and Bi Qin-Sheng(毕勤胜). Chin. Phys. B, 2010, 19(8): 080510.
[15] Wavelet threshold method of resolving noise interference in periodic short-impulse signals chaotic detection
Deng Ke(邓科), Zhang Lu(张路), and Luo Mao-Kang(罗懋康). Chin. Phys. B, 2010, 19(3): 030506.
No Suggested Reading articles found!