|
|
Reduced one-body density matrix of Tonks–Girardeau gas at finite temperature |
Fu Xiao-Chen (傅笑晨), Hao Ya-Jiang (郝亚江) |
Department of Physics, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract With thermal Bose-Fermi mapping method, we investigate the Tonks-Girardeau gas at finite temperature. It is shown that at low temperature, the Tonks gas displays the Fermi-like density profiles, and with the increase in temperature, the Tonks gas distributes in wider region. The reduced one-body density matrix is diagonal dominant in the whole temperature region, and the off-diagonal elements shall vanish rapidly with the deviation from the diagonal part at high temperature.
|
Received: 03 April 2015
Revised: 21 April 2015
Accepted manuscript online:
|
PACS:
|
05.30.Jp
|
(Boson systems)
|
|
03.75.Hh
|
(Static properties of condensates; thermodynamical, statistical, and structural properties)
|
|
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11004007) and the Fundamental Research Funds for the Central Universities of China. |
Corresponding Authors:
Hao Ya-Jiang
E-mail: haoyj@ustb.edu.cn
|
Cite this article:
Fu Xiao-Chen (傅笑晨), Hao Ya-Jiang (郝亚江) Reduced one-body density matrix of Tonks–Girardeau gas at finite temperature 2015 Chin. Phys. B 24 090501
|
[1] |
Stöferle T, Moritz H, Schori C, Köhl M and Esslinger T 2004 Phys. Rev. Lett. 92 130403
|
[2] |
Paredes B, Widera A, Murg V, Mandel Q, Fölling S, Cirac I, Shlyapnikov G V, Hänsch T W and Bloch I 2004 Nature 429 277
|
[3] |
Kinoshita T, Wenger T and Weiss D S 2004 Science 305 1125
|
[4] |
Haller E, Mark M J, Hart R, Danzl J G, Röllner L, Melezhik V, Schmelcher P and Nägerl H 2010 Phys. Rev. Lett. 104 153203
|
[5] |
Jacqmin T, Armijo J, Berrada T, Kheruntsyan K V and Bouchoule I 2011 Phys. Rev. Lett. 106 230405
|
[6] |
Girardeau M D 1960 J. Math. Phys. 1 516
|
[7] |
Girardeau M D 1965 Phys. Rev. 139 B500
|
[8] |
Tonks L 1936 Phys. Rev. 50 955
|
[9] |
Astrakharchik G E, Boronat J, Casulleras J and Giorgini S 2005 Phys. Rev. Lett. 95 190407
|
[10] |
Batchelor M T, Bortz M, Guan X W and Oelkers N 2005 J. Stat. Mech.: Theory Exp. L10001
|
[11] |
Chen S, Guan L, Yin X, Hao Y and Guan X W 2010 Phys. Rev. A 81 031609(R)
|
[12] |
Chen S, Guan X W, Yin X, Guan L and Batchelor M T 2010 Phys. Rev. A 81 031608(R)
|
[13] |
Guan L and Chen S 2010 Phys. Rev. Lett. 105 175301
|
[14] |
Wang L, Hao Y and Chen S 2010 Phys. Rev. A 81 063637
|
[15] |
Hoffman M D, Javernick P D, Loheac A C, Porter W J, Anderson E R and Drut J E 2015 Phys. Rev. A 91 033618
|
[16] |
Kheruntsyan K V, Gangardt D M, Drummond P D and Shlyapnikov G V 2003 Phys. Rev. Lett. 91 040403
|
[17] |
Bouchoule I, Kheruntsyan K V and Shlyapnikov G V 2007 Phys. Rev. A 75 031606
|
[18] |
Zhou Q, Lu J F and Yin J P 2010 Chin. Phys. B 19 093202
|
[19] |
Dunjko V, Lorent V and Olshanii M 2001 Phys. Rev. Lett. 86 5413
|
[20] |
Hao Y, Zhang Y, Liang J Q and Chen S 2006 Phys. Rev. A 73 063617
|
[21] |
Fuchs J N, Gangardt D M, Keilmann T and Shlyapnikov G V 2005 Phys. Rev. Lett. 95 150402
|
[22] |
Guan L, Chen S, Wang Y and Ma Z Q 2009 Phys. Rev. Lett. 102 160402
|
[23] |
Batchelor M T, Bortz M, Guan X W and Oelkers N 2006 J. Stat. Mech. P03016
|
[24] |
Deuretzbacher F, Bongs K, Sengstock K and Pfannkuche D 2007 Phys. Rev. A 75 013614
|
[25] |
Hao Y and Chen S 2009 Eur. Phys. J. D 51 261
|
[26] |
Hao Y, Zhang Y, Guan X W and Chen S 2009 Phys. Rev. A 79 033607
|
[27] |
Olshanii M 1998 Phys. Rev. Lett. 81 938
|
[28] |
Bergeman T, Moore M G and Olshanii M 2003 Phys. Rev. Lett. 91 163201
|
[29] |
Lenard A 1966 J. Math. Phys. 7 1268
|
[30] |
Das K K, Girardeau M D and Wright E M 2002 Phys. Rev. Lett. 89 170404
|
[31] |
Vignolo P and Minguzzi A 2013 Phys. Rev. Lett. 110 020403
|
[32] |
Yang C N 1962 Rev. Mod. Phys. 34 694
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|