Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 090501    DOI: 10.1088/1674-1056/24/9/090501
GENERAL Prev   Next  

Reduced one-body density matrix of Tonks–Girardeau gas at finite temperature

Fu Xiao-Chen (傅笑晨), Hao Ya-Jiang (郝亚江)
Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
Abstract  

With thermal Bose-Fermi mapping method, we investigate the Tonks-Girardeau gas at finite temperature. It is shown that at low temperature, the Tonks gas displays the Fermi-like density profiles, and with the increase in temperature, the Tonks gas distributes in wider region. The reduced one-body density matrix is diagonal dominant in the whole temperature region, and the off-diagonal elements shall vanish rapidly with the deviation from the diagonal part at high temperature.

Keywords:  Tonks-Girardeau gas      finite temperature      reduced one-body density matrix  
Received:  03 April 2015      Revised:  21 April 2015      Accepted manuscript online: 
PACS:  05.30.Jp (Boson systems)  
  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  67.85.-d (Ultracold gases, trapped gases)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11004007) and the Fundamental Research Funds for the Central Universities of China.

Corresponding Authors:  Hao Ya-Jiang     E-mail:  haoyj@ustb.edu.cn

Cite this article: 

Fu Xiao-Chen (傅笑晨), Hao Ya-Jiang (郝亚江) Reduced one-body density matrix of Tonks–Girardeau gas at finite temperature 2015 Chin. Phys. B 24 090501

[1] Stöferle T, Moritz H, Schori C, Köhl M and Esslinger T 2004 Phys. Rev. Lett. 92 130403
[2] Paredes B, Widera A, Murg V, Mandel Q, Fölling S, Cirac I, Shlyapnikov G V, Hänsch T W and Bloch I 2004 Nature 429 277
[3] Kinoshita T, Wenger T and Weiss D S 2004 Science 305 1125
[4] Haller E, Mark M J, Hart R, Danzl J G, Röllner L, Melezhik V, Schmelcher P and Nägerl H 2010 Phys. Rev. Lett. 104 153203
[5] Jacqmin T, Armijo J, Berrada T, Kheruntsyan K V and Bouchoule I 2011 Phys. Rev. Lett. 106 230405
[6] Girardeau M D 1960 J. Math. Phys. 1 516
[7] Girardeau M D 1965 Phys. Rev. 139 B500
[8] Tonks L 1936 Phys. Rev. 50 955
[9] Astrakharchik G E, Boronat J, Casulleras J and Giorgini S 2005 Phys. Rev. Lett. 95 190407
[10] Batchelor M T, Bortz M, Guan X W and Oelkers N 2005 J. Stat. Mech.: Theory Exp. L10001
[11] Chen S, Guan L, Yin X, Hao Y and Guan X W 2010 Phys. Rev. A 81 031609(R)
[12] Chen S, Guan X W, Yin X, Guan L and Batchelor M T 2010 Phys. Rev. A 81 031608(R)
[13] Guan L and Chen S 2010 Phys. Rev. Lett. 105 175301
[14] Wang L, Hao Y and Chen S 2010 Phys. Rev. A 81 063637
[15] Hoffman M D, Javernick P D, Loheac A C, Porter W J, Anderson E R and Drut J E 2015 Phys. Rev. A 91 033618
[16] Kheruntsyan K V, Gangardt D M, Drummond P D and Shlyapnikov G V 2003 Phys. Rev. Lett. 91 040403
[17] Bouchoule I, Kheruntsyan K V and Shlyapnikov G V 2007 Phys. Rev. A 75 031606
[18] Zhou Q, Lu J F and Yin J P 2010 Chin. Phys. B 19 093202
[19] Dunjko V, Lorent V and Olshanii M 2001 Phys. Rev. Lett. 86 5413
[20] Hao Y, Zhang Y, Liang J Q and Chen S 2006 Phys. Rev. A 73 063617
[21] Fuchs J N, Gangardt D M, Keilmann T and Shlyapnikov G V 2005 Phys. Rev. Lett. 95 150402
[22] Guan L, Chen S, Wang Y and Ma Z Q 2009 Phys. Rev. Lett. 102 160402
[23] Batchelor M T, Bortz M, Guan X W and Oelkers N 2006 J. Stat. Mech. P03016
[24] Deuretzbacher F, Bongs K, Sengstock K and Pfannkuche D 2007 Phys. Rev. A 75 013614
[25] Hao Y and Chen S 2009 Eur. Phys. J. D 51 261
[26] Hao Y, Zhang Y, Guan X W and Chen S 2009 Phys. Rev. A 79 033607
[27] Olshanii M 1998 Phys. Rev. Lett. 81 938
[28] Bergeman T, Moore M G and Olshanii M 2003 Phys. Rev. Lett. 91 163201
[29] Lenard A 1966 J. Math. Phys. 7 1268
[30] Das K K, Girardeau M D and Wright E M 2002 Phys. Rev. Lett. 89 170404
[31] Vignolo P and Minguzzi A 2013 Phys. Rev. Lett. 110 020403
[32] Yang C N 1962 Rev. Mod. Phys. 34 694
[1] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[2] Non-equilibrium atomic simulation for Frenkel–Kontorova model with moving dislocation at finite temperature
Baiyili Liu(刘白伊郦) and Shaoqiang Tang(唐少强). Chin. Phys. B, 2020, 29(11): 110501.
[3] Quantum fluctuation in excited states of mesoscopic LC circuits at finite temperature
Wang Ji-Suo(王继锁), Fan Hong-Yi(范洪义), and Meng Xiang-Guo(孟祥国). Chin. Phys. B, 2010, 19(3): 034206.
No Suggested Reading articles found!