Please wait a minute...
Chinese Physics, 2007, Vol. 16(1): 16-22    DOI: 10.1088/1009-1963/16/1/003
GENERAL Prev   Next  

Density matrix for an electron confined in quantum dots under uniform magnetic field and static electrical field

Pang Qian-Jun(庞乾骏)
Department of Physics, Shanghai Jiaotong University, Shanghai 200030, China
Abstract  Using unitary transformations, this paper obtains the eigenvalues and the common eigenvector of Hamiltonian and a new-defined generalized angular momentum (Lz) for an electron confined in quantum dots under a uniform magnetic field (UMF) and a static electric field (SEF). It finds that the eigenvalue of Lz  just stands for the expectation value of a usual angular momentum lz in the eigen-state. It first obtains the matrix density for this system via directly calculating a transfer matrix element of operator $\exp( -\beta H$) in some representations with the technique of integral within an ordered products (IWOP) of operators, rather than via solving a Bloch equation. Because the quadratic homogeneity of potential energy is broken due to the existence of SEF, the virial theorem in statistical physics is not satisfactory for this system, which is confirmed through the calculation of thermal averages of physical quantities.
Keywords:  unitary transformation      IWOP technique      density matrix in ($x_1, p_2$) representation      coherent rotational-entangled state  
Received:  28 November 2005      Revised:  19 January 2006      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Fd (Algebraic methods)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 60374037 and 60574036), the Program for New Century Excellent Talents of High Education of China(Grant No NCET 2005-290), The Special Research Fund for the Doctoral Program of High Education of China (Grant No 20050055013).

Cite this article: 

Pang Qian-Jun(庞乾骏) Density matrix for an electron confined in quantum dots under uniform magnetic field and static electrical field 2007 Chinese Physics 16 16

[1] Unitary transformation of general nonoverlapping-image multimode interference couplers with any input and output ports
Ze-Zheng Li(李泽正), Wei-Hua Han(韩伟华), Zhi-Yong Li(李智勇). Chin. Phys. B, 2020, 29(1): 014206.
[2] Deterministic and exact entanglement teleportation viathe W state
Chen Xiu-Bo(陈秀波), Wen Qiao-Yan(温巧燕), Sun Zhong-Xu(孙中旭), Shangguan Li-Ying(上官丽英), and Yang Yi-Xian(杨义先). Chin. Phys. B, 2010, 19(1): 010303.
[3] Probabilistic teleportation of multi-particle partially entangled state
Chen Xiu-Bo(陈秀波), Du Jian-Zhong(杜建忠), Wen Qiao-Yan(温巧燕), and Zhu Fu-Chen(朱甫臣) . Chin. Phys. B, 2008, 17(3): 771-777.
[4] Scheme for probabilistic remotely preparing a multi-particle entangled GHZ state
Ma Peng-Cheng(马鹏程) and Zhan You-Bang(詹佑邦). Chin. Phys. B, 2008, 17(2): 445-450.
[5] Multi-party dense coding in non-symmetric quantum channel
Fu Chang-Bao(付长宝), Xia Yan(夏岩), and Zhang Shou(张寿). Chin. Phys. B, 2006, 15(8): 1682-1685.
[6] Probabilistic teleportation of a non-symmetric three-particle state
Chen Xiu-Bo (陈秀波), Wen Qiao-Yan (温巧燕), Zhu Fu-Chen (朱甫臣). Chin. Phys. B, 2006, 15(10): 2240-2245.
[7] Probabilistic teleportation of an arbitrary three-particle state
Lin Xiu (林秀), Li Hong-Cai (李洪才). Chin. Phys. B, 2005, 14(9): 1724-1731.
[8] Generation of the nonlocal quantum entanglement of three three-level particles by local operations
Jin Xing-Ri (金星日), Zhang Ying-Qiao (张英俏), Jin Zhe (金哲), Zhang Shou (张寿). Chin. Phys. B, 2005, 14(10): 1936-1941.
[9] Photon-magnon interaction process: a mechanism of resonance linewidths of ferromagnet
Li Liang-Sheng (李粮生), Shi Qing-Fan (史庆藩). Chin. Phys. B, 2005, 14(1): 110-114.
[10] Teleportation of N-particle entangled W state via entanglement swapping
Zhan You-Bang (詹佑邦). Chin. Phys. B, 2004, 13(11): 1801-1805.
[11] Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a partial entangled pair
Dai Hong-Yi (戴宏毅), Li Cheng-Zu (李承祖), Chen Ping-Xing (陈平行). Chin. Phys. B, 2003, 12(12): 1354-1359.
[12] Teleportation of an arbitrary three-particle state
Chen Li-Bing (陈立冰). Chin. Phys. B, 2002, 11(10): 999-1003.
[13] MULTIPHOTON JAYNES-CUMMINGS MODEL SOLVED VIA SUPERSYMMETRIC UNITARY TRANSFORMATION
Lu Huai-xin (逯怀新), Wang Xiao-qin (王晓芹). Chin. Phys. B, 2000, 9(8): 568-571.
[14] TIME-DEPENDENT LANDAU SYSTEM AND NON-ADIABATIC BERRY PHASE IN TWO DIMENSIONS
Jing Hui (景辉), Wu Jian-sheng (吴健生). Chin. Phys. B, 2000, 9(7): 481-484.
No Suggested Reading articles found!