Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 100703    DOI: 10.1088/1674-1056/22/10/100703
GENERAL Prev   Next  

Analysis of influence of RF power and buffer gas pressure on sensitivity of optically pumped cesium magnetometer

Shi Rong-Ye (石荣晔)a b, Wang Yan-Hui (王延辉)a b
a Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China;
b School of Software and Microelectronics, Peking University, Beijing 100871, China
Abstract  A further study is conducted on two factors which respectively influence the sensitivity of optically pumped cesium magnetometer (CsOPM). The influence of radio frequency (RF) power and the buffer gas pressure on the sensitivity is theoretically analyzed, and some properties are predicted. Based on the established measurement system and the visible Zeeman spectrum, not only is the real influence of these factors studied, but also, under our experimental condition, optimum parameters based on the measured curves are ascertained. The properties of these measured curves match the theoretical result very well. Our research attempts to provide theory reference to help magnetometer designers determine optimum parameters under certain conditions.
Keywords:  optically pumped cesium magnetometer      buffer gas pressure      sensitivity  
Received:  14 January 2013      Revised:  06 April 2013      Accepted manuscript online: 
PACS:  07.55.Ge (Magnetometers for magnetic field measurements)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.70.Jz (Line shapes, widths, and shifts)  
  85.70.Sq (Magnetooptical devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174015).
Corresponding Authors:  Wang Yan-Hui     E-mail:  wangyanhui@pku.edu.cn

Cite this article: 

Shi Rong-Ye (石荣晔), Wang Yan-Hui (王延辉) Analysis of influence of RF power and buffer gas pressure on sensitivity of optically pumped cesium magnetometer 2013 Chin. Phys. B 22 100703

[1] Bell W E and Bloom A L 1957 Phys. Rev. 107 1559
[2] Dang H B, Maloof A C and Romalis M V 2010 Appl. Phys. Lett. 97 151110
[3] Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R and Lukin M D 2008 Nat. Phys. 4 810
[4] Gu H F, Cai W Y, Wei Y K, Liu Z H, Wang Q, Wang Y, Dai Y D and Ma P 2012 Chin. Phys. B 21 040702
[5] Zhang S L, Liu Y B, Zeng J, Wang Y L, Kong X Y and Xie X M 2012 Acta Phys. Sin. 61 020701 (in Chinese)
[6] Huang K K, Li N and Lu X H 2012 Chin. Phys. Lett. 29 100701
[7] Alexandrov E B 2003 Phys. Scr. 2003 27
[8] Smullin S J, Savukov I M, Vasilakis G, Ghosh R K and Romalis M V 2009 Phys. Rev. A 80 033420
[9] Kawabata R, Fukuda K and Kandori A 2010 Jpn. J. Appl. Phys. 49 082401
[10] Bloch F 1946 Phys. Rev. 70 460
[11] Dicke R H 1953 Phys. Rev. 89 472
[12] Bison G 2004 "Development of an Optical Cardio-magnetometer", Ph. D. Thesis (Freiburg: University of Freiburg)
[13] Dehmelt H G 1957 Phys. Rev. 105 1487
[14] Ledbetter M P, Savukov I M, Acosta V M, Budker D and Romalis M V 2008 Phys. Rev. A 77 033408
[15] Franzen W 1959 Phys. Rev. 115 850
[1] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[2] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[3] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[4] Plasmonic sensor with self-reference capability based on functional layer film composed of Au/Si gratings
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Yunping Qi(祁云平), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(1): 014206.
[5] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[6] Sensitivity to external optical feedback of circular-side hexagonal resonator microcavity laser
Tong Zhao(赵彤), Zhi-Ru Shen(申志儒), Wen-Li Xie(谢文丽), Yan-Qiang Guo(郭龑强), An-Bang Wang(王安帮), and Yun-Cai Wang(王云才). Chin. Phys. B, 2021, 30(12): 120513.
[7] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[8] Dynamic behavior of the cyanobacterial circadian clock with regulation of CikA
Ying Li(李莹), Guang-Kun Zhang(张广鹍), and Yan-Ming Ge (葛焰明). Chin. Phys. B, 2021, 30(10): 108702.
[9] Quantum noise of a harmonic oscillator under classical feedback control
Feng Tang(汤丰), Nan Zhao(赵楠). Chin. Phys. B, 2020, 29(9): 090303.
[10] Entrainment range affected by the difference in sensitivity to light-information between two groups of SCN neurons
Bao Zhu(朱宝), Jian Zhou(周建), Mengting Jia(贾梦婷), Huijie Yang(杨会杰), Changgui Gu(顾长贵). Chin. Phys. B, 2020, 29(6): 068702.
[11] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[12] High sensitive pressure sensors based on multiple coating technique
Rizwan Zahoor, Chang Liu(刘畅), Muhammad Rizwan Anwar, Fu-Yan Lin(林付艳), An-Qi Hu(胡安琪), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(2): 028102.
[13] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[14] Broadband visible light absorber based on ultrathin semiconductor nanostructures
Lin-Jin Huang(黄林锦), Jia-Qi Li(李嘉麒), Man-Yi Lu(卢漫仪), Yan-Quan Chen(陈彦权), Hong-Ji Zhu(朱宏基), Hai-Ying Liu(刘海英). Chin. Phys. B, 2020, 29(1): 014201.
[15] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
No Suggested Reading articles found!