Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 087702    DOI: 10.1088/1674-1056/22/8/087702

Dielectric loss of half-doped manganite La0.5Ca0.5MnO3

Cao Xian-Sheng (曹先胜)a, Ji Gao-Feng (吉高峰)a b, Luo Bing-Cheng (罗炳成)c, Li Feng (李峰)a
a School of Mathematics and Physics, Changzhou University, Changzhou 213164, China;
b Department of Microelectronics, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China;
c Shaanxi Key Laboratory of Condensed Matter Structures and Properties,School of Science, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  The dielectric loss tanδ of half-doped manganite La0.5Ca0.5MnO3 is investigated using Green's function technique. The La0.5Ca0.5MnO3 is described by the Kondo-lattice model in the double exchange limit, taking into account the Jahn-Teller distortion and the super-exchange interaction between the localized electrons. It is found that the intensity of tanδ decreases with increasing |εJT|, V, and U. It is also observed that the transition temperature TP rises as |εJT| and U increase. It is worth noting that TP remains unchanged and the strength of tanδ increases with increasing g. The calculated dielectric loss results are explained theoretically, and these behaviors are in qualitative agreement with the experimental results.
Keywords:  multiferroics      dielectric loss      La0.5Ca0.5MnO3  
Received:  08 December 2012      Revised:  08 January 2013      Accepted manuscript online: 
PACS:  77.22.Gm (Dielectric loss and relaxation)  
  77.84.Lf (Composite materials)  
  85.35.Ds (Quantum interference devices)  
Fund: Project supported by the Priming Scientific Research Foundation of Changzhou University, China (Grant Nos. ZMF1002133 and ZMF09020023) and the National Natural Science Foundation of China (Grant No. 51202195).
Corresponding Authors:  Cao Xian-Sheng     E-mail:

Cite this article: 

Cao Xian-Sheng (曹先胜), Ji Gao-Feng (吉高峰), Luo Bing-Cheng (罗炳成), Li Feng (李峰) Dielectric loss of half-doped manganite La0.5Ca0.5MnO3 2013 Chin. Phys. B 22 087702

[1] Claude Ederer and Nicola A Spaldin 2004 Nat. Mater. 3 849
[2] Rivas J, Rivas-Murias B, Fondado A, Mira J and Señarís-Rodríguez M A 2004 Appl. Phys. Lett. 85 6224
[3] Paolo Barone, Silvia Picozzi and Jeroen van den Brink 2011 Phys. Rev. B 83 233103
[4] Zou T, Wang F, Liu Y, Yan L Q and Sun Y 2010 Appl. Phys. Lett. 97 092501
[5] Indu Dhiman, Deshpande S K and Das A 2010 J. Appl. Phys. 108 083915
[6] Giovannetti G, Kumar S, Brink J and Picozzi S 2009 Phys. Rev. Lett. 103 037601
[7] Silvia Picozzi1, Kunihiko Yamauchi1, Ivan A Sergienko, Cengiz Sen, Biplab Sanyal and Elbio Dagotto 2008 J. Phys.: Condens. Matter 20 434208
[8] Cao X S and Chen C L 2008 Phys. Lett. A 372 5356
[9] Kugel K I, Rakhmanov A L and Sboychakov A O 2005 Phys. Rev. Lett. 95 267210
[10] Ramakrishnan T V, Krishnamurthy H R, Hassan S R and Pai G V 2004 Phys. Rev. Lett. 92 157203
[11] Elk K 1974 Phys. Stat. Sol. (b) 64 489
[12] Kubo R 1957 J. Phys. Soc. Jpn. 12 570
[13] Zubarev D N 1960 Phys. Usp. 3 320
[14] Chang F G, Song G L, Fang K and Wang Z K 2007 Acta Phys. Sin. 56 6068 (in Chinese)
[15] Zhang C H, Xu Z, Gao J J and Wang B K 2009 Acta Phys. Sin. 58 6500 (in Chinese)
[16] Guo X,Wang X, Zheng W and Tang W H 2010 Acta Phys. Sin. 59 2815 (in Chinese)
[17] Wang W, Wang X J, Zhu J, Mao X Y and Chen X B 2009 Chin. Phys. Lett. 26 047701
[18] Shah M R and Akther Hossain A K M 2012 Chin. Phys. Lett. 29 047803
[19] Mercone S, Wahl A, Pautrat A, Pollet M and Simon C 2004 Phys. Rev. B 69 174433
[20] Khomskii D, Dmitry V Efremov, Jeroen van den Brink and Daniel I Khomskii 2003 arXiv: 0306651v1 [cond-mat. str-el]
[21] Bardeen J and Shockley W 1950 Phys. Rev. 80 72
[22] Sundaresan A, Paulose P L, Mallik R and Sampathkumaran E V 1998 Phys. Rev. B 57 2690
[23] Pecharromán C and Moya J S 2000 Adv. Mater. 12 294
[24] Rivadulla F, Freita-Alvite M, López-Quintela A, Hueso L E, Miguéns D R, Sande P and Rivas J 2002 J. Appl. Phys. 91 785
[1] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[2] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[3] Comprehensive studies on dielectric properties of p-methoxy benzylidene p-decyl aniline with function of temperature and frequency in planar geometry: A potential nematic liquid crystal for display devices
Pankaj Kumar Tripathi, Kunwar Vikram, Mithlesh Tiwari, and Ajay Shriram. Chin. Phys. B, 2021, 30(6): 064208.
[4] Structural and dielectric properties of giant dielectric Na1/2Sm1/2Cu3Ti4O12 ceramics prepared by reactive sintering methods
H Mahfoz Kotb. Chin. Phys. B, 2019, 28(9): 098202.
[5] Opto propeller effect on Micro-Rotors with different handedness
Yiwen Tang(唐怡闻), Zhibing Li(李志兵). Chin. Phys. B, 2019, 28(8): 084702.
[6] Structures and local ferroelectric polarization switching properties of orthorhombic YFeO3 thin film prepared by a sol-gel method
Runlan Zhang(张润兰), Shuaishuai Li(李帅帅), Changle Chen(陈长乐), Li-An Han(韩立安), Shanxin Xiong(熊善新). Chin. Phys. B, 2019, 28(3): 037701.
[7] Electrical and dielectric properties of Na1/2La1/2Cu3Ti4O12 ceramics prepared by high energy ball-milling and conventional sintering
H Mahfoz Kotb, Mohamad M Ahmad. Chin. Phys. B, 2016, 25(12): 128201.
[8] Quantitative calculations of polarizations arising from the symmetric and antisymmetric exchange strictions in Tm-doped GdMnO3
Qin Ming-Hui (秦明辉), Lin Lin (林林), Li Lin (李林), Jia Xing-Tao (贾兴涛), Liu Jun-Ming (刘俊明). Chin. Phys. B, 2015, 24(3): 037509.
[9] Al-doping-induced magnetocapacitance in the multiferroic AgCrS2
Liu Rong-Deng (刘荣灯), He Lun-Hua (何伦华), Yan Li-Qin (闫丽琴), Wang Zhi-Cui (王志翠), Sun Yang (孙阳), Liu Yun-Tao (刘蕴韬), Chen Dong-Feng (陈东风), Zhang Sen (张森), Zhao Yong-Gang (赵永刚), Wang Fang-Wei (王芳卫). Chin. Phys. B, 2015, 24(12): 127507.
[10] Raman phonons in multiferroic FeVO4 crystals
Zhang An-Min (张安民), Liu Kai (刘凯), Ji Jian-Ting (籍建葶), He Chang-Zhen (何长振), Tian Yong (田勇), Jin Feng (金峰), Zhang Qing-Ming (张清明). Chin. Phys. B, 2015, 24(12): 126301.
[11] Structural and physical properties of BiFeO3 thin films epitaxially grown on SrTiO3 (001) and polar (111) surfaces
He Shu-Min (贺树敏), Liu Guo-Lei (刘国磊), Zhu Da-Peng (朱大鹏), Kang Shi-Shou (康仕寿), Chen Yan-Xue (陈延学), Yan Shi-Shen (颜世申), Mei Liang-Mo (梅良模). Chin. Phys. B, 2014, 23(3): 036801.
[12] Ho and Ti co-doped BiFeO3 multiferroic ceramics with enhanced magnetization and ultrahigh electrical resistivity
Gu Yan-Hong (谷艳红), Liu Yong (刘雍), Yao Chao (姚超), Ma Yan-Wei (马衍伟), Wang Yu (王雨), Chan Helen Lai-Wah (陈王丽华), Chen Wan-Ping (陈万平). Chin. Phys. B, 2014, 23(3): 037501.
[13] Multiferroicity in B-site ordered double perovskite Y2MnCrO6
Fang Yong (房勇), Yan Shi-Ming (颜士明), Qiao Wen (乔文), Wang Wei (王伟), Wang Dun-Hui (王敦辉), Du You-Wei (都有为). Chin. Phys. B, 2014, 23(11): 117501.
[14] Bipolar resistive switching in BiFe0.95Zn0.05O3 films
Yuan Xue-Yong (袁学勇), Luo Li-Rong (罗丽荣), Wu Di (吴迪), Xu Qing-Yu (徐庆宇). Chin. Phys. B, 2013, 22(10): 107702.
[15] Multiferroic ZnO obtained by substituting oxygen with nitrogen
Xu Qing-Yu(徐庆宇), Wen Zheng(温峥), Gao Jin-Long(高锦龙), Wu Di(吴迪), Qiu Teng(邱腾), Tang Shao-Long(唐少龙), and Xu Ming-Xiang(徐明祥) . Chin. Phys. B, 2011, 20(8): 087505.
No Suggested Reading articles found!