Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 087102    DOI: 10.1088/1674-1056/22/8/087102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles investigation on the structural and elastic properties of cubic-Fe2 TiAl under high pressures

Liu Xian-Kun (刘显坤), Liu Cong (刘聪), Zheng Zhou (郑洲), Lan Xiao-Hua (兰晓华)
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  The structural, elastic, and thermodynamic properties of cubic-Fe2TiAl under high temperatures and pressures are investigated by performing ab initio calculation and using the quasi-harmonic Debye model. Some ground state properties such as lattice constant, bulk modulus, pressure derivative of the bulk modulus, and elastic constants are in good agreement with the available experimental results and theoretical data. The thermodynamic properties of Fe2TiAl such as thermal expansion coefficient, Debye temperature, and heat capacity in ranges of 0 K-1200 K and 0 GPa-250 GPa are also obtained. The calculation results indicate that the heat capacities at different pressures all increase with temperature increasing and are close to the Dulong-Petit limit at higher temperatures, Debye temperature decreases with temperature increasing, and increases with pressure rising. The cubic-Fe2TiAl is stable mechanically under 250 GPa. Moreover, under lower pressure, thermal expansion coefficient rises rapidly with temperature increasing, and the increasing rate becomes slow at higher pressure.
Keywords:  Fe2TiAl      first principles      elastic constants      thermodynamics properties  
Received:  12 November 2012      Revised:  24 January 2013      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  62.20.Dc  
  05.70.-a (Thermodynamics)  
  65.40.Ba (Heat capacity)  
Fund: Project supported by the Advanced Research Foundation, China (Grant No. 20100210).
Corresponding Authors:  Liu Xian-Kun     E-mail:  xiankunliu@126.com

Cite this article: 

Liu Xian-Kun (刘显坤), Liu Cong (刘聪), Zheng Zhou (郑洲), Lan Xiao-Hua (兰晓华) First-principles investigation on the structural and elastic properties of cubic-Fe2 TiAl under high pressures 2013 Chin. Phys. B 22 087102

[1] Kim Y W 1994 Ordered Intermetallic Alloys 46 30
[2] Froes F H, Suryanarayana C and Eliezer D 1992 J. Mater. Sci. 27 5113
[3] Liu Y L, Liu L M, Wang S Q and Ye H Q 2007 Intermetallics 15 428
[4] Liu Y L, Liu L M, Wang S Q and Ye H Q 2007 J. Alloys Compd. 440 287
[5] Jiang C 2008 Acta Materialia 56 6224
[6] Liu Y L, Li H, Zhang L, Wang S and Ye H Q 2011 Comput. Mater. Sci. 50 1467
[7] Nishino Y, Kato M, Asano S, Soda K, Hayasaki M and Mizutani U 1997 Phys. Rev. Lett. 79 1909
[8] Singh D J and Mazin I I 1998 Phys. Rev. B 57 14352
[9] Weht R and Pickett W E 1998 Phys. Rev. B 58 6855
[10] Song Y, Guo Z X and Yang R 2002 Journal of Light Metals 2 115
[11] Guo H Z, Chen X R, Zhu J, Cai L C and Gao J 2005 Chin. Phys. Lett. 22 1764
[12] Cheng X R, Wang Y J and Chang J 2007 Chin. Phys. Lett. 24 2642
[13] Wang C L, Yu B H, Huo H L, Chen D and Sun H B 2009 Chin. Phys. B 18 1248
[14] Liu X, Zhou X M and Zeng Z Y 2010 Chin. Phys. B 19 127103
[15] Hao A M, Zhou T J, Zhu Y, Zhang X Y and Liu R P 2011 Chin. Phys. B 20 047103
[16] Liu Z H and Shang J X 2012 Chin. Phys. B 21 016202
[17] Rached H, Rached D, Rabah M, Khenata R and Reshak A H 2010 Physica B 405 3515
[18] Hachemaoui M, Khenata R, Bouhemadou A, Bin-Omran S, Reshak A H, Seman F and Rached D 2010 Solid State Commun. 150 1869
[19] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 384
[20] Kohn W and Sham L J 1965 Phys. Rev. A 140 1133
[21] Perdew J P, Burke K and Emzerhof M 1996 Phys. Rev. Lett. 77 3865
[22] Milan V, Winker B, White J A, Packard C J, Payne M C, Akhmatskaya E V and Nobes R H 2000 J. Quantum Chem. 77 895
[23] Jorgensen J D, Hinks D G and Short S 2001 Phys. Rev. B 63 224522
[24] Fu H Z, Teng M, Hong X H, Lu Y and Gao T 2010 Physica B 405 846
[25] Murnaghan F D 1944 Proc. Natl. Acad. Soc. 30 5390
[26] Buschow K H, van Engen J P G and Jongebreur R 1983 J. Magn. Magn. Mater. 38 1
[27] Blanco M A, Francisco E, Luaña V 2004 Comput. Phys. Commun. 158 57
[28] Blanco M A, Pendás A M, Francisco E, Recio J M, Franco R and Molec J 1996 Struct. Theochem. 368 245
[29] Flórez M, Recio J M, Francisco E, Blanco M A and Martín P A 2002 Phys. Rev. B 66 144112
[30] Francisco E, Recio J M, Blanco M A, Pendás A M and Costales A 1998 J. Phys. Chem. 102 1595
[31] Hill R 1952 Proc. Phys. Soc. 65 349
[32] Debye P 1912 Ann. Phys. 39 789
[33] Petit A T and Dulong P L 1819 Ann. Phys. 10 395
[1] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[2] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[3] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[4] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[5] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[6] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[7] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[8] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[9] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[10] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[11] First-principles investigation on ideal strength of B2 NiAl and NiTi alloys
Chun-Yao Zhang(张春尧), Fu-Yang Tian(田付阳), Xiao-Dong Ni(倪晓东). Chin. Phys. B, 2020, 29(3): 036201.
[12] Composition effect on elastic properties of model NiCo-based superalloys
Weijie Li(李伟节), Chongyu Wang(王崇愚). Chin. Phys. B, 2020, 29(2): 026102.
[13] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
[14] First principles study of post-boron carbide phases with icosahedra broken
Ming-Wei Chen(陈明伟), Zhao Liang(梁钊), Mei-Ling Liu(刘美玲), Uppalapati Pramod Kumar, Chao Liu(刘超)†, and Tong-Xiang Liang(梁彤祥)‡. Chin. Phys. B, 2020, 29(10): 103102.
[15] First principles study of interactions of oxygen-carbon-vacancy in bcc Fe
Yuan You(由园), Mu-Fu Yan(闫牧夫), Ji-Hong Yan(闫纪红), Gang Sun(孙刚), Chao Wang(王超). Chin. Phys. B, 2019, 28(10): 106102.
No Suggested Reading articles found!