Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 114211    DOI: 10.1088/1674-1056/26/11/114211
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Gamma-radiation effects in pure-silica-core photonic crystal fiber

Wei Cai(蔡伟)1, Ningfang Song(宋凝芳)1, Jing Jin(金靖)1, Jingming Song(宋镜明)1, Wei Li(李伟)2, Wenyong Luo(罗文勇)2, Xiaobin Xu(徐小斌)1
1. School of Instrument Science and Opto-electronic Engineering, Beihang University, Beijing 100191, China;
2. FiberHome Telecommunication Technologies CO., Ltd., Wuhan 430000, China
Abstract  

We investigated the steady state gamma-ray radiation response of pure-silica-core photonic crystal fibers (PSC-PCFs) under an accumulated dose of 500 Gy and a dose rate of 2.38 Gy/min. The radiation-induced attenuation (RIA) spectra in the near-infrared region from 800 nm to 1700 nm were obtained. We find that the RIA at 1550 nm is related with hydroxyl (OH-) absorption defects in addition to the identified self-trapped hole (STH) defects. Moreover, it is proposed and demonstrated that reduced OH- absorption defects can decrease the RIA at 1550 nm. The RIA at 1550 nm has effectively declined from 27.7 dB/km to 3.0 dB/km through fabrication improvement. Preliminary explanations based on the unique fabrication processes were given to interpret the RIA characteristics of PSC-PCFs. The results show that the PSC-PCFs, which offer great advantages over conventional fibers, are promising and applicable to fiber sensors in harsh environments.

Keywords:  photonic crystal fibers      radiation-induced attenuation      color centers      fiber optics sensors  
Received:  29 April 2017      Revised:  11 June 2017      Accepted manuscript online: 
PACS:  42.81.Pa (Sensors, gyros)  
  42.88.+h (Environmental and radiation effects on optical elements, devices, and systems)  
  61.72.jn (Color centers)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61575012 and 61575013) and the National Key Scientific Instrument and Equipment Development Project, China (Grant No. 2013YQ040877).

Corresponding Authors:  Wei Cai     E-mail:  sdfz174caiwei@126.com

Cite this article: 

Wei Cai(蔡伟), Ningfang Song(宋凝芳), Jing Jin(金靖), Jingming Song(宋镜明), Wei Li(李伟), Wenyong Luo(罗文勇), Xiaobin Xu(徐小斌) Gamma-radiation effects in pure-silica-core photonic crystal fiber 2017 Chin. Phys. B 26 114211

[1] Knight J C 2003 Nature 424 847
[2] Hoo Y L, Jin W, Shi C Z, Ho H L, Wang D N and Ruan S C 2003 Appl. Opt. 42 3509
[3] Qin W, Li S G, Xue J R, Xin X J and Zhang L 2013 Chin. Phys. B 22 074213
[4] Lefévre H 2014 Fiber Optic Gyroscope(2nd Edn.)(Artech House) pp. 328-329
[5] Rizzolo S, Boukenter A, Allanche T, Perisse J, Bouwmans G, Hamzaoui H El, Bigot L, Ouerdane Y, Cannas M, Bouazaoui M, Mace J R, Bauer S and Girard S 2016 IEEE Trans. Nucl. Sci. 63 2038
[6] Tajima K, Zhou J, Nakajima K and Sato K 2004 J. Lightwave Technol. 22 7
[7] Girard S, Yahya A, Boukenter A, Ouerdane Y, Meunier J P, Kristiansen R E and Vienne G 2002 IEEE Electron. Lett. 38 1169
[8] Kosolapov A F, Semjonov S L and Tomashuk A L 2006 Proceedings of SPIE(Vol. 6193) Reliability of Optical Fiber Components, Devices, Systems, and Networks Ⅲ p. 6193E
[9] Kosolapov A F, Nikolin I V, Tomashuk A L, Semjonov S L and Zabezhailov M O 2004 Inorg. Mater. 40 1229
[10] Wang X Q, Zhang C X, Jin J, Song N F and Xu H J 2011 Optik 122 1918
[11] Jin J, Li Y, Zhang Z C, Wu C X and Song N F 2016 Chin. Phys. B 25 084213
[12] Girard S, Ouerdane Y, Bouazaoui M, Marcandella C, Boukenter A, Bigot L and Kudlinski A 2011 Opt. Express 19 21760
[13] Chernov P V, Dianov E M, Karpechev V N, Kornienko L S, Rybaltovskll A O, Sokolov V O and Sulimov V B 1989 Phys. Stat. Sol. B 156 663
[14] Kyoto M, Chigusa Y, Watanabe M O O E M, Matsubara T, Yamamoto T and Okamoto S 1989 J. Nucl. Sci. Technol. 26 507
[15] Henschel H, Köhn O and Schmidt H U 1996 Proceedings of SPIE(Vol. 2811) Photonics for Space Environments IV p. 68
[16] Yamaguchi M, Saito K and Ikushima A J 2003 Phys. Rev. B 68 153204
[17] Alessi A, Girard S, Cannas M, Agnello S, Boukenter A and Ouerdane Y 2012 J. Lightwave Technol. 30 1726
[18] Frosz M H, Ahmed G, Lapshina N, Keding R, Babic F, Joly N Y and Philips R 2016 Opt. Mater. Express 6 2975
[19] Wen J X, Peng G D, Luo W Y, Xiao Z Y, Chen Z Y and Wang T Y 2011 Opt. Express 19 23271
[20] Olantera L, Sigaud C, Troska J, Vasey F, Petrovich M N, Poletti F, Wheeler N V, Wooler J P and Richardson D J 2013 J. Instrum. 8 C12010
[1] A radiation-temperature coupling model of the optical fiber attenuation spectrum in the Ge/P co-doped fiber
Yong Li(李勇), Haoshi Zhang(张浩石), Xiaowei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(7): 074211.
[2] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[3] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[4] Experimental implementation of a continuous-time quantum random walk on a solid-state quantum information processor
Maimaitiyiming Tusun(麦麦提依明·吐孙), Yang Wu(伍旸), Wenquan Liu(刘文权), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(11): 110302.
[5] Estimation of vector static magnetic field by a nitrogen-vacancy center with a single first-shell 13C nuclear (NV-13C) spin in diamond
Feng-Jian Jiang(蒋峰建), Jian-Feng Ye(叶剑锋), Zheng Jiao(焦铮), Zhi-Yong Huang(黄志永), Hai-Jiang Lv(吕海江). Chin. Phys. B, 2018, 27(5): 057601.
[6] Experimental investigation of vector static magnetic field detection using an NV center with a single first-shell 13C nuclear spin in diamond
Feng-Jian Jiang(蒋峰建), Jian-Feng Ye(叶剑锋), Zheng Jiao(焦铮), Jun Jiang(蒋军), Kun Ma(马堃), Xin-Hu Yan(闫新虎), Hai-Jiang Lv(吕海江). Chin. Phys. B, 2018, 27(5): 057602.
[7] Cascaded tilted fiber Bragg grating for enhanced refractive index sensing
Biqiang Jiang(姜碧强), Zhixuan Bi(毕芷瑄), Shouheng Wang(王守恒), Teli Xi(席特立), Kaiming Zhou, Lin Zhang, Jianlin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 114220.
[8] Photonic crystal fiber polarization filter with two large apertures coated with gold layers
Jun-Jun Wu(吴君君), Shu-Guang Li(李曙光), Qiang Liu(刘强), Min Shi(石敏). Chin. Phys. B, 2017, 26(11): 114209.
[9] Surface plasmon resonance-induced tunable polarization filters based on nanoscale gold film-coated photonic crystal fibers
Yingchao Liu(刘英超), Hailiang Chen(陈海良), Shuguang Li(李曙光), Qiang Liu(刘强), Jianshe Li(李建设). Chin. Phys. B, 2017, 26(10): 104211.
[10] Effect of radiation-induced color centers absorption in optical fibers on fiber optic gyroscope for space application
Jing Jin(金靖), Ya Li(李亚), Zu-Chen Zhang(张祖琛), Chun-Xiao Wu(吴春晓), Ning-Fang Song(宋凝芳). Chin. Phys. B, 2016, 25(8): 084213.
[11] Radiation-induced attenuation self-compensating effect in super-fluorescent fiber source
Yang Yuan-Hong (杨远洪), Suo Xin-Xin (索鑫鑫), Yang Wei (杨巍). Chin. Phys. B, 2014, 23(9): 094213.
[12] Passive polarization rotator based on silica photonic crystal fiber for 1.31-μm and 1.55-μm bands via adjusting the fiber length
Chen Lei (陈雷), Zhang Wei-Gang (张伟刚), Wang Li (王丽), Bai Zhi-Yong (白志勇), Zhang Shan-Shan (张珊珊), Wang Biao (王标), Yan Tie-Yi (严铁毅), Jonathan Sieg. Chin. Phys. B, 2014, 23(10): 104220.
[13] Supercontinuum generated in all-normal dispersion photonic crystal fibers with picosecond pump pulses
Li Pan (李磐), Shi Lei (时雷), Mao Qing-He (毛庆和). Chin. Phys. B, 2013, 22(7): 074204.
No Suggested Reading articles found!