|
|
A full-dimensional analytical potential energy surface for the F+CH4→HF+CH3 reaction |
Yang Chuan-Lu (杨传路), Wang Mei-Shan (王美山), Liu Wen-Wang (刘文旺), Zhang Zhi-Hong (张志红), Ma Xiao-Guang (马晓光) |
School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China |
|
|
Abstract A full-dimensional analytical potential energy surface (APES) for the F+CH4→HF +CH3 reaction is developed based on 7127 ab initio energy points at the unrestricted coupled-cluster with single, double, and perturbative triple excitations. The correlation-consistent polarized triple-split valence basis set is used. The APES is represented with a many-body expansion containing 239 parameters determined by the least square fitting method. The two-body terms of the APES are fitted by potential energy curves with multi-reference configuration interaction, which can describe the diatomic molecules (CH, H2, HF, and CF) accurately. It is found that the APES can reproduce the geometry and vibrational frequencies of the saddle point better than those available in the literature. The rate constants based on the present APES support the experimental results of Moore et al. [Int. J. Chem. Kin. 26, 813 (1994)]. The analytical first-order derivation of energy is also provided, making the present APES convenient and efficient for investigating the title reaction with quasiclassical trajectory calculations.
|
Received: 17 October 2012
Revised: 28 November 2012
Accepted manuscript online:
|
PACS:
|
31.50.-x
|
(Potential energy surfaces)
|
|
31.50.Bc
|
(Potential energy surfaces for ground electronic states)
|
|
82.20.Kh
|
(Potential energy surfaces for chemical reactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174117 and 10974078). |
Corresponding Authors:
Yang Chuan-Lu
E-mail: scuycl@gmail.com
|
Cite this article:
Yang Chuan-Lu (杨传路), Wang Mei-Shan (王美山), Liu Wen-Wang (刘文旺), Zhang Zhi-Hong (张志红), Ma Xiao-Guang (马晓光) A full-dimensional analytical potential energy surface for the F+CH4→HF+CH3 reaction 2013 Chin. Phys. B 22 063102
|
[1] |
Lin J J, Zhou J G, Shiu W C and Liu K P 2003 Science 300 966
|
[2] |
Zhang W Q, Kawamata H and Liu K P 2009 Science 325 303
|
[3] |
Corchado J C and Espinosa-García J 1996 J. Chem. Phys. 105 3152
|
[4] |
Corchado J C and Espinosa-García J 1996 J. Chem. Phys. 105 3160
|
[5] |
Rangel R, Navarrete M and Espinosa-García J 2005 J. Phys. Chem. A 109 1441
|
[6] |
Espinosa-García J, Bravo J L and Rangel C 2007 J. Phys. Chem. A 111 2761
|
[7] |
Troya D, Millán J, Baños I and González M 2004 J. Chem. Phys. 120 5181
|
[8] |
Czakó G, Shepler B C, Braams B J and Bowman J M 2009 J. Chem. Phys. 130 084301
|
[9] |
Knowles P J, Hampel C and Werner H J 2000 J. Chem. Phys. 112 3106
|
[10] |
Watts J D, Gauss J and Bartlett R J 1993 J. Chem. Phys. 98 8718
|
[11] |
Pople J A, Head-Gordon M and Raghavachari K 1987 J. Chem. Phys. 87 5968
|
[12] |
JANAF Thermochemical Tables, 1985 3rd edn., ed. Chase M W Jr, Davies C A, Downey J R, Frurip D J, McDonald R A and Syverud A N (Washington D.C.: National Bureau of Standards) Vol. 14
|
[13] |
Frisch M J, Trucks, G W Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö , Foresman J B, Ortiz J V, Cioslowsk J I, and Fox D J, Gaussian, Inc., Wallingford CT, 2003
|
[14] |
MOLPRO, version 2006.1, a package of ab initio programs by Werner H J, Knowles P J, Knizia G, Manby F R, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar K R, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklaβ A, O'Neill D P, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Ston A J E, Tarroni R, Thorsteinsson T, Wang M. see http://www.molpro.net
|
[15] |
Castillo J F, Aoiz F J, Banares L, Martinez-Nunez E, Fernandez-Ramos A and Vazquez S 2005 J. Phys. Chem. A 109 8459
|
[16] |
Wang Q, Cai Z and Feng D 2006 J. Mol. Struct. (THEOCHEM) 759 31
|
[17] |
Murrell J N and Sorbe K S 1974 J. Chem. Soc. Faraday Trans. 2 70 1552
|
[18] |
Yang C L, Zhang Z H and Ren T Q 2002 J. Chem. Phys. 116 6656
|
[19] |
Yang C L, Zhu Z H, Wang R and Liu X Y 2001 J. Mol. Struct. (THEOCHEM) 548 47
|
[20] |
Yang C L, Huang Y J and Han K L 2003 J. Mol. Struct. (THEOCHEM) 625 289
|
[21] |
Ren T Q, Ding S L and Yang C L 2005 J. Mol. Struct. (THEOCHEM) 728 159
|
[22] |
Gao F, Yang C L and Ren T Q 2006 J. Mol. Struct. (THEOCHEM) 758 81
|
[23] |
Gao F, Yang C L, Hu Z Y and Wang M S 2007 Chin. Phys. 16 3668
|
[24] |
Liu Y F and Jia Y 2011 Chin. Phys. B 20 033106
|
[25] |
Yu B H, Shi D H, Sun J Feng, Zhu Z L, Liu Y F and Yang X D 2007 Chin. Phys. 16 2371
|
[26] |
Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure IV (New York: Van Nostrand Reinhold Company)
|
[27] |
Huber K P and Herzberg G, "Constants of Diatomic Molecules" (data prepared by Gallagher J W and Johnson R D, III) in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, ed. Linstrom P J and Mallard W G, July 2001, National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov)
|
[28] |
Olson R E and Liu B 1980 J. Chem. Phys. 73 2817
|
[29] |
Miller A J, Software from Miller A J, http://users.bigpond.net.au/ amiller
|
[30] |
Corchado J C, and et al. 2007 POLYRATE, version 9.7; Univeristy of Minnesota: Minneapolis, MN, 2007
|
[31] |
Moore C M, Smith I W, and Stewart D W A 1994 Int. J. Chem. Kin. 26 813
|
[32] |
Atkinson R, Baulch D L, Cox R A, Hampson R F Jr, Kerr J A and Tore J 1992 J. Phys. Chem. Ref. Data 21 1125
|
[33] |
Persky A 1996 J. Phys. Chem. 100 689
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|