Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 063102    DOI: 10.1088/1674-1056/22/6/063102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

A full-dimensional analytical potential energy surface for the F+CH4→HF+CH3 reaction

Yang Chuan-Lu (杨传路), Wang Mei-Shan (王美山), Liu Wen-Wang (刘文旺), Zhang Zhi-Hong (张志红), Ma Xiao-Guang (马晓光)
School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
Abstract  A full-dimensional analytical potential energy surface (APES) for the F+CH4→HF +CH3 reaction is developed based on 7127 ab initio energy points at the unrestricted coupled-cluster with single, double, and perturbative triple excitations. The correlation-consistent polarized triple-split valence basis set is used. The APES is represented with a many-body expansion containing 239 parameters determined by the least square fitting method. The two-body terms of the APES are fitted by potential energy curves with multi-reference configuration interaction, which can describe the diatomic molecules (CH, H2, HF, and CF) accurately. It is found that the APES can reproduce the geometry and vibrational frequencies of the saddle point better than those available in the literature. The rate constants based on the present APES support the experimental results of Moore et al. [Int. J. Chem. Kin. 26, 813 (1994)]. The analytical first-order derivation of energy is also provided, making the present APES convenient and efficient for investigating the title reaction with quasiclassical trajectory calculations.
Keywords:  analytical potential energy surface      least square fitting method      UCCSD(T)      F+CH4→HF+CH3 reaction  
Received:  17 October 2012      Revised:  28 November 2012      Accepted manuscript online: 
PACS:  31.50.-x (Potential energy surfaces)  
  31.50.Bc (Potential energy surfaces for ground electronic states)  
  82.20.Kh (Potential energy surfaces for chemical reactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174117 and 10974078).
Corresponding Authors:  Yang Chuan-Lu     E-mail:  scuycl@gmail.com

Cite this article: 

Yang Chuan-Lu (杨传路), Wang Mei-Shan (王美山), Liu Wen-Wang (刘文旺), Zhang Zhi-Hong (张志红), Ma Xiao-Guang (马晓光) A full-dimensional analytical potential energy surface for the F+CH4→HF+CH3 reaction 2013 Chin. Phys. B 22 063102

[1] Lin J J, Zhou J G, Shiu W C and Liu K P 2003 Science 300 966
[2] Zhang W Q, Kawamata H and Liu K P 2009 Science 325 303
[3] Corchado J C and Espinosa-García J 1996 J. Chem. Phys. 105 3152
[4] Corchado J C and Espinosa-García J 1996 J. Chem. Phys. 105 3160
[5] Rangel R, Navarrete M and Espinosa-García J 2005 J. Phys. Chem. A 109 1441
[6] Espinosa-García J, Bravo J L and Rangel C 2007 J. Phys. Chem. A 111 2761
[7] Troya D, Millán J, Baños I and González M 2004 J. Chem. Phys. 120 5181
[8] Czakó G, Shepler B C, Braams B J and Bowman J M 2009 J. Chem. Phys. 130 084301
[9] Knowles P J, Hampel C and Werner H J 2000 J. Chem. Phys. 112 3106
[10] Watts J D, Gauss J and Bartlett R J 1993 J. Chem. Phys. 98 8718
[11] Pople J A, Head-Gordon M and Raghavachari K 1987 J. Chem. Phys. 87 5968
[12] JANAF Thermochemical Tables, 1985 3rd edn., ed. Chase M W Jr, Davies C A, Downey J R, Frurip D J, McDonald R A and Syverud A N (Washington D.C.: National Bureau of Standards) Vol. 14
[13] Frisch M J, Trucks, G W Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö , Foresman J B, Ortiz J V, Cioslowsk J I, and Fox D J, Gaussian, Inc., Wallingford CT, 2003
[14] MOLPRO, version 2006.1, a package of ab initio programs by Werner H J, Knowles P J, Knizia G, Manby F R, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar K R, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklaβ A, O'Neill D P, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Ston A J E, Tarroni R, Thorsteinsson T, Wang M. see http://www.molpro.net
[15] Castillo J F, Aoiz F J, Banares L, Martinez-Nunez E, Fernandez-Ramos A and Vazquez S 2005 J. Phys. Chem. A 109 8459
[16] Wang Q, Cai Z and Feng D 2006 J. Mol. Struct. (THEOCHEM) 759 31
[17] Murrell J N and Sorbe K S 1974 J. Chem. Soc. Faraday Trans. 2 70 1552
[18] Yang C L, Zhang Z H and Ren T Q 2002 J. Chem. Phys. 116 6656
[19] Yang C L, Zhu Z H, Wang R and Liu X Y 2001 J. Mol. Struct. (THEOCHEM) 548 47
[20] Yang C L, Huang Y J and Han K L 2003 J. Mol. Struct. (THEOCHEM) 625 289
[21] Ren T Q, Ding S L and Yang C L 2005 J. Mol. Struct. (THEOCHEM) 728 159
[22] Gao F, Yang C L and Ren T Q 2006 J. Mol. Struct. (THEOCHEM) 758 81
[23] Gao F, Yang C L, Hu Z Y and Wang M S 2007 Chin. Phys. 16 3668
[24] Liu Y F and Jia Y 2011 Chin. Phys. B 20 033106
[25] Yu B H, Shi D H, Sun J Feng, Zhu Z L, Liu Y F and Yang X D 2007 Chin. Phys. 16 2371
[26] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure IV (New York: Van Nostrand Reinhold Company)
[27] Huber K P and Herzberg G, "Constants of Diatomic Molecules" (data prepared by Gallagher J W and Johnson R D, III) in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, ed. Linstrom P J and Mallard W G, July 2001, National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov)
[28] Olson R E and Liu B 1980 J. Chem. Phys. 73 2817
[29] Miller A J, Software from Miller A J, http://users.bigpond.net.au/ amiller
[30] Corchado J C, and et al. 2007 POLYRATE, version 9.7; Univeristy of Minnesota: Minneapolis, MN, 2007
[31] Moore C M, Smith I W, and Stewart D W A 1994 Int. J. Chem. Kin. 26 813
[32] Atkinson R, Baulch D L, Cox R A, Hampson R F Jr, Kerr J A and Tore J 1992 J. Phys. Chem. Ref. Data 21 1125
[33] Persky A 1996 J. Phys. Chem. 100 689
[1] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[2] The CALYPSO methodology for structure prediction
Qunchao Tong(童群超), Jian Lv(吕健), Pengyue Gao(高朋越), Yanchao Wang(王彦超). Chin. Phys. B, 2019, 28(10): 106105.
[3] Spin polarization and dispersion effects in emergence of roaming transition state for nitrobenzene isomerization
Zhi-Yuan Zhang(张志远), Wan-Run Jiang(姜万润), Bo Wang(王波), Yan-Qiang Yang(杨延强), Zhi-Gang Wang(王志刚). Chin. Phys. B, 2018, 27(1): 013102.
[4] Molecular structure and analytical potential energy function of SeCO
Zhang Heng (张恒), Tian Duan-Liang (田端亮), Yan Shi-Ying (阎世英). Chin. Phys. B, 2014, 23(9): 093101.
[5] Further investigations of the low-lying electronic states of AsO+ radical
Zhu Zun-Lue (朱遵略), Qiao Hao (乔浩), Lang Jian-Hua (郎建华), Sun Jin-Feng (孙金锋). Chin. Phys. B, 2013, 22(10): 103102.
[6] Multireference configuration interaction study on spectroscopic properties of low-lying electronic states of As2 molecule
Wang Jie-Min (王杰敏), Liu Qiang (刘强). Chin. Phys. B, 2013, 22(9): 093102.
[7] Transport properties of a binary mixture of CO2–N2 from the pair potential energy functions based on a semi-empirical inversion method
Song Bo(宋渤), Wang Xiao-Po(王晓坡), Yang Fu-Xin(杨富鑫), and Liu Zhi-Gang(刘志刚) . Chin. Phys. B, 2012, 21(4): 045101.
[8] Investigations of spectroscopic parameters and molecular constants for X1Σg+, w3Δu, and W1Δu electronic states of P2 molecule
Wang Jie-Min(王杰敏), Feng Heng-Qiang(冯恒强), Sun Jin-Feng(孙金锋), and Shi De-Heng(施德恒) . Chin. Phys. B, 2012, 21(2): 023102.
[9] Accurate potential energy function and spectroscopic study of the X$^2\Sigma^+$, A$^2\Pi$ and B$^2\Sigma^+$ states of the CP radical
Liu Yu-Fang(刘玉芳) and Jia Yi(贾毅). Chin. Phys. B, 2011, 20(3): 033106.
[10] Accurate studies on the full vibrational energy spectra and molecular dissociation energies for some electronic states of halogen molecule
Lü Jian-Liang(吕建良), Ren Wei-Yi(任维义), Xu Ping-Chuan(徐平川), and Chen Tai-Hong(陈太红). Chin. Phys. B, 2011, 20(2): 023102.
[11] Study on spectroscopic parameters and molecular constants of HCl(X1+) molecule by using multireference configuration interaction approach
Zhang Xiao-Niu(张小妞), Shi De-Heng(施德恒), Zhang Jin-Ping(张金平), Zhu Zun-Lüe(朱遵略), and Sun Jin-Feng(孙金锋). Chin. Phys. B, 2010, 19(5): 053401.
[12] Tunneling between double wells of atom in crossed electromagnetic fields
Shen Li(沈礼),Wang Lei(汪磊),Yang Hai-Feng(杨海峰), Liu Xiao-Jun(柳晓军),andLiu Hong-Ping(刘红平) . Chin. Phys. B, 2009, 18(12): 5277-5282.
[13] Multireference configuration interaction potential curve and analytical potential energy function of the ground and low-lying excited states of CdSe
Gao Feng(高峰), Yang Chuan-Lu (杨传路), Hu Zhen-Yan(胡振彦), and Wang Mei-Shan(王美山). Chin. Phys. B, 2007, 16(12): 3668-3674.
[14] Investigations on spectroscopic parameters, vibrational levels, classical turning points and inertial rotation and centrifugal distortion constants for the X1+g state of sodium dimer
Yu Ben-Hai(余本海), Dai Qi-Run(戴启润), Shi De-Heng(施德恒), and Liu Yu-Fang(刘玉芳). Chin. Phys. B, 2007, 16(10): 2962-2967.
[15] Ab initio calculations on the a3+u state properties of dimer 7Li2
Shi De-Heng(施德恒), Sun Jin-Feng(孙金锋), Zhu Zun-Lue(朱遵略), and Liu Yu-Fang(刘玉芳). Chin. Phys. B, 2007, 16(9): 2701-2708.
No Suggested Reading articles found!