Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 060506    DOI: 10.1088/1674-1056/22/6/060506
GENERAL Prev   Next  

Explosive synchronization of complex networks with different chaotic oscillators

Zhao Jun-Chan (赵军产)
College of Mathematics and Computer Science, Wuhan Textile University, Wuhan 430073, China
Abstract  Recent studies have shown that explosive synchronization transitions can be observed in networks of phase oscillators [Watts D J and Strogatz S H 1998 Nature 391 440] and chaotic oscillators [Newman M E J and Watts D J 1999 Phys. Lett. A 263 341]. Here, we study the effect of different chaotic dynamics on the synchronization transitions in small world networks and scale free networks. The continuous transition is discovered for Rössler systems in both of the above complex networks. However, explosive transitions take place for the coupled Lorenz systems, and the main reason is the abrupt change of dynamics before achieving complete synchronization. Our results show that the explosive synchronization transitions are accompanied by the change of system dynamics.
Keywords:  complex network      explosive synchronization transition      chaotic oscillator  
Received:  16 August 2012      Revised:  28 November 2012      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61203159, 61164020, 11271295, and 11071280) and the Foundation of Wuhan Textile University (Grant No. 113073).
Corresponding Authors:  Zhao Jun-Chan     E-mail:  junchanzhao@163.com

Cite this article: 

Zhao Jun-Chan (赵军产) Explosive synchronization of complex networks with different chaotic oscillators 2013 Chin. Phys. B 22 060506

[1] Watts D J and Strogatz S H 1998 Nature 393 440
[2] Newman M E J and Watts D J 1999 Phys. Lett. A 263 341
[3] Barabasi A L and Albert R 1999 Science 286 509
[4] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
[5] Kocarev L and Amato P 2005 Chaos 15 024101
[6] Li X and Chen G 2003 IEEE Trans. Circ. Syst. I 50 1381
[7] Wang X and Chen G 2002 Int. J. Bifur. Chaos 12 187
[8] Lü J and Chen G 2005 IEEE Trans. Autom. Control 50 841
[9] Zhang Y W, Bu S L and Wang B H 2006 Chin. Phys. Lett. 23 2909
[10] Ma Z, Liu Z and Zhang G 2006 Chaos 16 023103
[11] Zhou J and Chen T 2006 IEEE Trans. Circuits Syst. I 53 733
[12] Zhou J, Lu J and Lü J 2008 Automatica 44 996
[13] Yu W, Chen G and Lü J 2009 Automatica 45 429
[14] Zhang Q J and Zhao J C 2012 Chin. Phys. B 21 040502
[15] Sun W, Chen Z and Chen S 2012 Chin. Phys. B 21 050509
[16] Achlioptas D, D'Souza R M and Spencer J 2009 Science 323 1453
[17] Radicchi F and Fortunato S 2009 Phys. Rev. Lett. 103 168701
[18] Cho Y S, Kim J S, Park J, Kahng B and Kim D 2009 Phys. Rev. Lett. 103 135702
[19] Gómez-Gardeñes J, Gómez S, Arenas A and Moreno Y 2011 Phys. Rev. Lett. 106 128701
[20] Leyva I, Sevilla-Escoboza R, Buldń J M, Sendiña-Nadal I, Gómez-Gardeñes J, Arenas A, Moreno Y, Gómez S, Jaimes-Reátegui R and Boccaletti S 2012 Phys. Rev. Lett. 108 168702
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[4] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[5] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[6] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[7] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[10] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[11] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[12] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[13] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[14] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[15] Manufacturing enterprise collaboration network: An empirical research and evolutionary model
Ji-Wei Hu(胡辑伟), Song Gao(高松), Jun-Wei Yan(严俊伟), Ping Lou(娄平), Yong Yin(尹勇). Chin. Phys. B, 2020, 29(8): 088901.
No Suggested Reading articles found!