Special Issue:
Virtual Special Topic — Magnetism and Magnetic Materials
|
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effects of chemical pressure on diluted magnetic semiconductor (Ba,K)(Zn,Mn)2As2 |
Y Peng(彭毅)1,2, S Yu(于爽)2,3, G Q Zhao(赵国强)2,3, W M Li(李文敏)2,3, J F Zhao(赵建发)2,3, L P Cao(曹立朋)2, X C Wang(望贤成)2,3, Q Q Liu(刘清青)2,3, S J Zhang(张思佳)2,3, R Z Yu(于润泽)2,3, Z Deng(邓正)2,3, X H Zhu(朱小红)1, C Q Jin(靳常青)2,3,4 |
1 College of Materials Science & Engineering, Sichuan University, Chengdu 610064, China;
2 Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physics, University of Chinese Academy of Sciences, Beijing 100190, China;
4 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China |
|
|
Abstract Chemical pressure induced by iso-valent doping has been widely employed to tune physical properties of materials. In this work, we report effects of chemical pressure by substitution of Sb or P into As on a recently discovered diluted magnetic semiconductor (Ba,K)(Zn,Mn)2As2, which has the record of reliable Curie temperature of 230 K due to independent charge and spin doping. Sb and P are substituted into As-site to produce negative and positive chemical pressures, respectively. X-ray diffraction results demonstrate the successful chemical solution of dopants. Magnetic properties of both K-under-doped and K-optimal-doped samples are effectively tuned by Sb- and P-doping. The Hall effect measurements do not show decrease in carrier concentrations upon Sb- and P-doping. Impressively, magnetoresistance is significantly improved from 7% to 27% by only 10% P-doping, successfully extending potential application of (Ba,K)(Zn,Mn)2As2.
|
Received: 02 February 2019
Revised: 25 February 2019
Accepted manuscript online:
|
PACS:
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
74.62.Fj
|
(Effects of pressure)
|
|
75.50.-y
|
(Studies of specific magnetic materials)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFB0405703), the Ministry of Science and Technology of China (Grant Nos. 2018YFA03057001 and 2015CB921000), and the National Natural Science Foundation of China through the Research Projects (Grant Nos. 11534016 and 61504166). |
Corresponding Authors:
Z Deng, X H Zhu, C Q Jin
E-mail: dengzheng@iphy.ac.cn;xhzhu@scu.edu.cn;Jin@iphy.ac.cn
|
Cite this article:
Y Peng(彭毅), S Yu(于爽), G Q Zhao(赵国强), W M Li(李文敏), J F Zhao(赵建发), L P Cao(曹立朋), X C Wang(望贤成), Q Q Liu(刘清青), S J Zhang(张思佳), R Z Yu(于润泽), Z Deng(邓正), X H Zhu(朱小红), C Q Jin(靳常青) Effects of chemical pressure on diluted magnetic semiconductor (Ba,K)(Zn,Mn)2As2 2019 Chin. Phys. B 28 057501
|
[1] |
Zutic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
|
[2] |
Jungwirth T, Wunderlich J, Novák V, Olejník K, Gallagher B L, Campion R P, Edmonds K W, Rushforth A W, Ferguson A J and Němec P 2014 Rev. Mod. Phys. 86 855
|
[3] |
Erwin S C and Žutić I 2004 Nat. Mater. 3 410
|
[4] |
Ohno H 1998 Science 281 951
|
[5] |
Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P and von Molnar S 2011 Nano Lett. 11 2584
|
[6] |
Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y and Ohtani K 2000 Nature 408 944
|
[7] |
Deng Z, Jin C Q, Liu Q Q, et al. 2011 Nat. Commun. 2 422
|
[8] |
Zhao K, Deng Z, Wang X C, et al. 2013 Nat. Commun. 4 1442
|
[9] |
Zhao K, Chen B J, Zhao G Q, Yuan Z, Liu Q Q, Deng Z, Zhu J L and Jin C Q 2014 Chin. Science Bulletin 59 2524
|
[10] |
Glasbrenner J K, Žutić I and Mazin I I 2014 Phys. Rev. B 90 140403
|
[11] |
Sun F, Li N N, Chen B J, Jia Y T, Zhang L J, Li W M, Zhao G Q, Xing L Y, Fabbris G, Wang Y G, Deng Z, Uemura Y J, Mao H K, Haskel D, Yang W G and Jin C Q 2016 Phys. Rev. B 93 224403
|
[12] |
Sun F, Zhao G Q, Escanhoela Jr C A, Chen B J, Kou R H, Wang Y G, Xiao, Y M Chow P, Mao H K, Haskel D, Yang W G and Jin C Q 2017 Phys. Rev. B 95 094412
|
[13] |
Zhao G Q, Li Z, Sun F, Yuan Z, Chen B J, Yu S, Peng Y, Deng Z, Wang X C and Jin C Q 2018 J. Phys.: Condens. Matter 30 254001
|
[14] |
Sun F, Xu C, Yu S, Chen B J, Zhao G Q, Deng Z, Wang Y G and Jin C Q 2017 Chin. Phys. Lett. 34 067501
|
[15] |
Zhao G Q, Lin C J, Deng Z, Gu G X, Yu S, Wang X C, Gong Z Z, Uemera Y J and Li Y Q, Jin C Q 2017 Sci. Reports 7 14473
|
[16] |
Wang R, Huang Z X, Zhao G Q, Yu S, Deng Z, Jin C Q, Jia Q J, Chen Y, Yang T Y, Jiang X M and Cao L X 2017 AIP Adv. 7 045017
|
[17] |
Suzuki H, Zhao G Q, Zhao K, Chen B J, Horio M, Koshiishi K, Xu J, Kobayashi M, Minohara M, Sakai E, Horiba K, Kumigashira H, Gu B, Maekawa S, Uemura Y J, Jin C Q and Fujimori A 2015 Phys. Rev. B 92 235120
|
[18] |
Frandsen B A, Gong Z, Terban M W, Banerjee S, Chen B J, Jin C Q, Feygenson M, Uemura Y J and Billinge S J L 2016 Phys. Rev. B 94 094102
|
[19] |
Surmach M A, Chen B J, Deng Z, Jin C Q, Glasbrenner J K, Mazin I I, Ivanov A and Inosov D S 2018 Phys. Rev. B 97 104418
|
[20] |
Gu G, Zhao G, Lin C, Li Y Q, Jin C Q and Xiang G 2018 Appl. Phys. Lett. 112 032402
|
[21] |
Deng Z, Zhao K, Gu B, Han W, Zhu J L, Wang X C, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Zhang J S, Wang Y Y, Ning F L, Maekawa S, Uemura Y J and Jin C Q 2013 Phys. Rev. B 88 081203
|
[22] |
Chen B J, Zhao K, Deng Z, Han W, Zhu J L, Wang X C, Liu Q Q, Frandsen B, Liu L, Cheung S, Ning F L, Munsie T J S, Medina T, Luke G M, Carlo J P, Munevar J, Uemura Y J and Jin C Q 2014 Phys. Rev. B 90 155202
|
[23] |
Zhao K, Chen B J, Deng Z, et al. 2014 J. Appl. Phys. 116 163906
|
[24] |
Han W, Zhao K, Wang X C, Liu Q Q, Ning F L, Deng Z, Liu L, Zhu J L, Ding C, Man H Y and Jin C Q 2013 Sci. Chin. Phys. Mech. Astron. 56 2026
|
[25] |
Man H, Guo S, Sui Y, Guo Y, Chen B, Wang H, Ding C and Ning F L 2015 Sci. Rep. 5 15507
|
[26] |
Ding C, Man H, Qin C, et al. 2013 Phys. Rev. B 88 041102
|
[27] |
Chen B J, Deng Z, Wang X C, Feng S M, Yuan Z, Zhang S J, Liu Q Q and Jin C Q 2016 Chin. Phys. B 25 077503
|
[28] |
Suzuki H, Zhao K, Shibata G, Takahashi Y, Sakamoto S, Yoshimatsu K, Chen B J, Kumigashira H, Chang F H, Lin H J, Huang D J, Chen C T, Gu B, Maekawa S, Uemura Y J, Jin C Q and Fujimori A 2015 Phys. Rev. B 91 140401(R)
|
[29] |
Hirohata A, Sukegawa H, Yanagihara H, Zutic I, Seki T, Mizukami S and Swaminathan R 2015 IEEE Trans. Magn. 51 0800511
|
[30] |
Zutic I and Zhou T 2018 Sci. Chin.-Phys. Mech. & Astron. 61 067031
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|