Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 057501    DOI: 10.1088/1674-1056/28/5/057501
Special Issue: Virtual Special Topic — Magnetism and Magnetic Materials
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of chemical pressure on diluted magnetic semiconductor (Ba,K)(Zn,Mn)2As2

Y Peng(彭毅)1,2, S Yu(于爽)2,3, G Q Zhao(赵国强)2,3, W M Li(李文敏)2,3, J F Zhao(赵建发)2,3, L P Cao(曹立朋)2, X C Wang(望贤成)2,3, Q Q Liu(刘清青)2,3, S J Zhang(张思佳)2,3, R Z Yu(于润泽)2,3, Z Deng(邓正)2,3, X H Zhu(朱小红)1, C Q Jin(靳常青)2,3,4
1 College of Materials Science & Engineering, Sichuan University, Chengdu 610064, China;
2 Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physics, University of Chinese Academy of Sciences, Beijing 100190, China;
4 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  

Chemical pressure induced by iso-valent doping has been widely employed to tune physical properties of materials. In this work, we report effects of chemical pressure by substitution of Sb or P into As on a recently discovered diluted magnetic semiconductor (Ba,K)(Zn,Mn)2As2, which has the record of reliable Curie temperature of 230 K due to independent charge and spin doping. Sb and P are substituted into As-site to produce negative and positive chemical pressures, respectively. X-ray diffraction results demonstrate the successful chemical solution of dopants. Magnetic properties of both K-under-doped and K-optimal-doped samples are effectively tuned by Sb- and P-doping. The Hall effect measurements do not show decrease in carrier concentrations upon Sb- and P-doping. Impressively, magnetoresistance is significantly improved from 7% to 27% by only 10% P-doping, successfully extending potential application of (Ba,K)(Zn,Mn)2As2.

Keywords:  chemical pressure      (Ba,K)(Zn,Mn)2As2      diluted magnetic semiconductor      iso-valent doping  
Received:  02 February 2019      Revised:  25 February 2019      Accepted manuscript online: 
PACS:  75.50.Pp (Magnetic semiconductors)  
  74.62.Fj (Effects of pressure)  
  75.50.-y (Studies of specific magnetic materials)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2017YFB0405703), the Ministry of Science and Technology of China (Grant Nos. 2018YFA03057001 and 2015CB921000), and the National Natural Science Foundation of China through the Research Projects (Grant Nos. 11534016 and 61504166).

Corresponding Authors:  Z Deng, X H Zhu, C Q Jin     E-mail:  dengzheng@iphy.ac.cn;xhzhu@scu.edu.cn;Jin@iphy.ac.cn

Cite this article: 

Y Peng(彭毅), S Yu(于爽), G Q Zhao(赵国强), W M Li(李文敏), J F Zhao(赵建发), L P Cao(曹立朋), X C Wang(望贤成), Q Q Liu(刘清青), S J Zhang(张思佳), R Z Yu(于润泽), Z Deng(邓正), X H Zhu(朱小红), C Q Jin(靳常青) Effects of chemical pressure on diluted magnetic semiconductor (Ba,K)(Zn,Mn)2As2 2019 Chin. Phys. B 28 057501

[1] Zutic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[2] Jungwirth T, Wunderlich J, Novák V, Olejník K, Gallagher B L, Campion R P, Edmonds K W, Rushforth A W, Ferguson A J and Němec P 2014 Rev. Mod. Phys. 86 855
[3] Erwin S C and Žutić I 2004 Nat. Mater. 3 410
[4] Ohno H 1998 Science 281 951
[5] Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P and von Molnar S 2011 Nano Lett. 11 2584
[6] Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y and Ohtani K 2000 Nature 408 944
[7] Deng Z, Jin C Q, Liu Q Q, et al. 2011 Nat. Commun. 2 422
[8] Zhao K, Deng Z, Wang X C, et al. 2013 Nat. Commun. 4 1442
[9] Zhao K, Chen B J, Zhao G Q, Yuan Z, Liu Q Q, Deng Z, Zhu J L and Jin C Q 2014 Chin. Science Bulletin 59 2524
[10] Glasbrenner J K, Žutić I and Mazin I I 2014 Phys. Rev. B 90 140403
[11] Sun F, Li N N, Chen B J, Jia Y T, Zhang L J, Li W M, Zhao G Q, Xing L Y, Fabbris G, Wang Y G, Deng Z, Uemura Y J, Mao H K, Haskel D, Yang W G and Jin C Q 2016 Phys. Rev. B 93 224403
[12] Sun F, Zhao G Q, Escanhoela Jr C A, Chen B J, Kou R H, Wang Y G, Xiao, Y M Chow P, Mao H K, Haskel D, Yang W G and Jin C Q 2017 Phys. Rev. B 95 094412
[13] Zhao G Q, Li Z, Sun F, Yuan Z, Chen B J, Yu S, Peng Y, Deng Z, Wang X C and Jin C Q 2018 J. Phys.: Condens. Matter 30 254001
[14] Sun F, Xu C, Yu S, Chen B J, Zhao G Q, Deng Z, Wang Y G and Jin C Q 2017 Chin. Phys. Lett. 34 067501
[15] Zhao G Q, Lin C J, Deng Z, Gu G X, Yu S, Wang X C, Gong Z Z, Uemera Y J and Li Y Q, Jin C Q 2017 Sci. Reports 7 14473
[16] Wang R, Huang Z X, Zhao G Q, Yu S, Deng Z, Jin C Q, Jia Q J, Chen Y, Yang T Y, Jiang X M and Cao L X 2017 AIP Adv. 7 045017
[17] Suzuki H, Zhao G Q, Zhao K, Chen B J, Horio M, Koshiishi K, Xu J, Kobayashi M, Minohara M, Sakai E, Horiba K, Kumigashira H, Gu B, Maekawa S, Uemura Y J, Jin C Q and Fujimori A 2015 Phys. Rev. B 92 235120
[18] Frandsen B A, Gong Z, Terban M W, Banerjee S, Chen B J, Jin C Q, Feygenson M, Uemura Y J and Billinge S J L 2016 Phys. Rev. B 94 094102
[19] Surmach M A, Chen B J, Deng Z, Jin C Q, Glasbrenner J K, Mazin I I, Ivanov A and Inosov D S 2018 Phys. Rev. B 97 104418
[20] Gu G, Zhao G, Lin C, Li Y Q, Jin C Q and Xiang G 2018 Appl. Phys. Lett. 112 032402
[21] Deng Z, Zhao K, Gu B, Han W, Zhu J L, Wang X C, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Zhang J S, Wang Y Y, Ning F L, Maekawa S, Uemura Y J and Jin C Q 2013 Phys. Rev. B 88 081203
[22] Chen B J, Zhao K, Deng Z, Han W, Zhu J L, Wang X C, Liu Q Q, Frandsen B, Liu L, Cheung S, Ning F L, Munsie T J S, Medina T, Luke G M, Carlo J P, Munevar J, Uemura Y J and Jin C Q 2014 Phys. Rev. B 90 155202
[23] Zhao K, Chen B J, Deng Z, et al. 2014 J. Appl. Phys. 116 163906
[24] Han W, Zhao K, Wang X C, Liu Q Q, Ning F L, Deng Z, Liu L, Zhu J L, Ding C, Man H Y and Jin C Q 2013 Sci. Chin. Phys. Mech. Astron. 56 2026
[25] Man H, Guo S, Sui Y, Guo Y, Chen B, Wang H, Ding C and Ning F L 2015 Sci. Rep. 5 15507
[26] Ding C, Man H, Qin C, et al. 2013 Phys. Rev. B 88 041102
[27] Chen B J, Deng Z, Wang X C, Feng S M, Yuan Z, Zhang S J, Liu Q Q and Jin C Q 2016 Chin. Phys. B 25 077503
[28] Suzuki H, Zhao K, Shibata G, Takahashi Y, Sakamoto S, Yoshimatsu K, Chen B J, Kumigashira H, Chang F H, Lin H J, Huang D J, Chen C T, Gu B, Maekawa S, Uemura Y J, Jin C Q and Fujimori A 2015 Phys. Rev. B 91 140401(R)
[29] Hirohata A, Sukegawa H, Yanagihara H, Zutic I, Seki T, Mizukami S and Swaminathan R 2015 IEEE Trans. Magn. 51 0800511
[30] Zutic I and Zhou T 2018 Sci. Chin.-Phys. Mech. & Astron. 61 067031
[1] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[2] Microstructure and ferromagnetism of heavily Mn doped SiGe thin flims
Huanming Wang(王焕明), Sen Sun(孙森), Jiayin Xu(徐家胤), Xiaowei Lv(吕晓伟), Yuan Wang(汪渊), Yong Peng(彭勇), Xi Zhang(张析), Gang Xiang(向钢). Chin. Phys. B, 2020, 29(5): 057504.
[3] Structural stability at high pressure, electronic, and magnetic properties of BaFZnAs: A new candidate of host material of diluted magnetic semiconductors
Bi-Juan Chen(陈碧娟), Zheng Deng(邓正), Xian-Cheng Wang(望贤成), Shao-Min Feng(冯少敏), Zhen Yuan(袁真), Si-Jia Zhang(张思佳), Qing-Qing Liu(刘清青), Chang-Qing Jin(靳常青). Chin. Phys. B, 2016, 25(7): 077503.
[4] Room-temperature ferromagnetism induced by Cu vacancies in Cux(Cu2O)1-x granular films
Xie Xin-Jian (解新建), Li Hao-Bo (李好博), Wang Wei-Chao (王卫超), Lu Feng (卢峰), Yu Hong-Yun (于红云), Wang Wei-Hua (王维华), Cheng Ya-Hui (程雅慧), Zheng Rong-Kun (郑荣坤), Liu Hui (刘晖). Chin. Phys. B, 2015, 24(9): 097504.
[5] Tailoring the structural and magnetic properties of Cu-doped ZnO by c-axis pressure
Gong Ji-Jun (巩纪军), Chen Ji-Pei (陈继培), Zhang Fei (张飞), Wu Hao (吴昊), Qin Ming-Hui (秦明辉), Zeng Min (曾敏), Gao Xing-Sen (高兴森), Liu Jun-Ming (刘俊明). Chin. Phys. B, 2015, 24(3): 037505.
[6] Interplay of superconductivity and d-f correlation in CeFeAs1-xPxO1-yFy
Luo Yong-Kang (罗永康), Li Yu-Ke (李玉科), Wang Cao (王操), Lin Xiao (林效), Dai Jian-Hui (戴建辉), Cao Guang-Han (曹光旱), Xu Zhu-An (许祝安). Chin. Phys. B, 2013, 22(8): 087415.
[7] Defect-induced ferromagnetism in rutile TiO2:A first-principles study
Zhang Yong (张勇), Qi Yue-Ying (祁月盈), Hu Ya-Hua (胡亚华), Liang Pei (梁培). Chin. Phys. B, 2013, 22(12): 127101.
[8] Optical and magnetic properties of InFeP layers prepared by Fe+ implantation
Zhou Lin (周霖), Shang Yan-Xia (尚艳霞), Wang Ze-Song (王泽松), Zhang Rui (张瑞), Zhang Zao-Di (张早娣), Vasiliy O. Pelenovich, Fu De-Jun (付德君), Kang Tae Won. Chin. Phys. B, 2013, 22(10): 106105.
[9] The properties of GaMnN lms grown by metalorganic chemical vapour deposition using Raman spectroscopy
Xing Hai-Ying(邢海英), Niu Ping-Juan(牛萍娟), and Xie Yu-Xin(谢玉芯) . Chin. Phys. B, 2012, 21(7): 077801.
[10] A first-principles study of the magnetic properties in boron-doped ZnO
Xu Xiao-Guang(徐晓光), Yang Hai-Ling(杨海龄), Wu Yong(吴勇), Zhang De-Lin(张德林), and Jiang Yong(姜勇) . Chin. Phys. B, 2012, 21(4): 047504.
[11] Magnetic properties of Mn-doped GaN with defects: ab-initio calculations
E. Salmani, A. Benyoussef, H. Ez-Zahraouy, and E.H. Saidi . Chin. Phys. B, 2011, 20(8): 086601.
[12] Electronic and magnetic structures of V-doped zinc blende Zn1-xVxNyO1-y and Zn1-xVxPyO1-y
N. Mamouni, M. Belaiche, A. Benyoussef, A. El Kenz, H. Ez-Zahraouy, M. Loulidi, E. H. Saidi and E. K. Hlil . Chin. Phys. B, 2011, 20(8): 087504.
[13] Multiferroic ZnO obtained by substituting oxygen with nitrogen
Xu Qing-Yu(徐庆宇), Wen Zheng(温峥), Gao Jin-Long(高锦龙), Wu Di(吴迪), Qiu Teng(邱腾), Tang Shao-Long(唐少龙), and Xu Ming-Xiang(徐明祥) . Chin. Phys. B, 2011, 20(8): 087505.
[14] Room-temperature anomalous Hall effect and magnetroresistance in (Ga, Co)-codoped ZnO diluted magnetic semiconductor films
Liu Xue-Chao(刘学超), Chen Zhi-Zhan(陈之战), Shi Er-Wei(施尔畏), Liao Da-Qian(廖达前), and Zhou Ke-Jin(周克谨). Chin. Phys. B, 2011, 20(3): 037501.
[15] Paramagnetism in Cu-doped ZnO
Xu Qing-Yu(徐庆宇), Zheng Xiao-Hong(郑晓红), and Gong You-Pin(龚佑品). Chin. Phys. B, 2010, 19(7): 077501.
No Suggested Reading articles found!