Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 056201    DOI: 10.1088/1674-1056/22/5/056201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Ruby fluorescence pressure scale: Revisited

Liu Lei (柳雷), Bi Yan (毕延), Xu Ji-An (徐济安)
National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy Of Engineering Physics, Mianyang 621900, China
Abstract  Effect of non-hydrostatic stress on X-ray diffraction in diamond anvil cell (DAC) is studied. Pressure gradient in sample chamber leads to the broadening of the diffraction peaks, which increase with the hkl index of the crystal. It is found that the difference between the determined d-spacing compressive ratio d/d0 and the real d-spacing compressive ratio dr/d0 is determined by the yield stress of the pressure transmitting media (if used) and the shear modulus of the sample. On the basis of the corrected experiment data of Mao et al. (MXB86), which was used to calibrate the most widely used ruby fluorescence ruby scale, a new relationship of ruby fluorescence pressure scale is corrected, i.e., P=(1904/9.827)[(1+Δλ/λ0)9.827-1].
Keywords:  non-hydrostatic stress      ruby fluorescence pressure scale      diamond anvil cell  
Received:  11 October 2012      Revised:  05 December 2012      Accepted manuscript online: 
PACS:  62.20.D- (Elasticity)  
  64.30.Ef (Equations of state of pure metals and alloys)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Fund: Project supported by the Defense Industrial Technology Development Program of China (Grant No. B1520110001), the National Natural Science Foundation of China (Grant No. 10874158), and the CAEP (Grant Nos. 2010A0101001 and 2008A0101001).
Corresponding Authors:  Bi Yan     E-mail:  biyan_cn@yahoo.com.cn

Cite this article: 

Liu Lei (柳雷), Bi Yan (毕延), Xu Ji-An (徐济安) Ruby fluorescence pressure scale: Revisited 2013 Chin. Phys. B 22 056201

[1] Forman R A, Piermarini G J, Barnett J D and Block S 1972 Science 176 284
[2] Mao H K, Bell P M, Shaner J W and Steinberg D J 1978 J. Appl. Phys. 49 3286
[3] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[4] Aleksandrov I V, Goncharov A F, Zisman A N and Stishov S M 1987 Sov. Phys. JETP 66 384
[5] Zha C S, Mao H K and Hemley R J 2000 Proc. Natl. Acad. Sci. USA 97 13494
[6] Holzaphel W B 2003 J. Appl. Phys. 93 1813
[7] Dorogokupets P I and Oganov A R 2003 Dokl. Earth Sci. 391A 854
[8] Dewaele A, Loubeyre P and Mezouar M 2004 Phys. Rev. B 70 094112
[9] Chijioke A D, Nellis W J, Soldatov A and Silvera I F 2005 J. Appl. Phys. 98 114905
[10] Silvera I F, Chijioke A D, Nellis W J, Soldatov A and Tempere J 2007 Phys. Stat. Sol. (b) 244 460
[11] Dorogokupets P I and Oganov A R 2007 Phys. Rev. B 75 024115
[12] Dewaele A, Torrent M, Loubeyre P and Mezouar M 2008 Phys. Rev. B 78 104102
[13] Xu J and Huang E 1998 J. Geo. Soc. China. 41 199
[14] Kunc K, Loa I and Syassen K 2003 Phys. Rev. B 68 094107
[15] Kunc K, Loa I and Syassen K 2004 High Press. Res. 24 101
[16] Klotz S, Chervin J C, Munsch P and Marchand G L 2009 J. Phys. D: Appl. Phys. 42 075413
[17] Tempere J and Silvera I F 2011 J. Appl. Phys. 110 113523
[18] Wang J H and He D W 2008 Acta Phys. Sin. 57 3397 (in Chinese)
[19] Syassen K 2008 High Press. Res. 28 75
[20] Sung C M, Goetze C and Mao H K 1977 Rev. Sci. Instrum. 48 1386
[21] Duffy T S, Mao H K and Hemley R J 1995 Phys. Rev. Lett. 74 1371
[22] Wang J, He D and Duffy T S 2010 J. Appl. Phys. 108 063521
[23] Jing Q M, Wu Q, Liu L, Bi Y, Zhang Y, Liu S G and Xu J 2012 Chin. Phys. B 21 106201
[24] Kimura H, Ast D G and Basset W A 1982 J. Appl. Phys. 53 3523
[25] Jing Q M, Bi Y, Wu Q, Jing F Q, Wang Z G and Xu J A 2007 Rev. Sci. Instrum. 78 073906
[26] Mao H K, Badro J, Shu J, Hemley R J and Singh A K 2006 J. Phys.: Condens. Matter 18 S963
[27] Daniels W B and Smith C S 1958 Phys. Rev. 111 713
[28] Proupin E M and Singh A K 2007 Phys. Rev. B 76 054117
[29] Katahara R W and Manghnani M H 1979 J. Phys. F: Met. Phys. 9 773
[30] He D W and Duffy T S 2006 Phys. Rev. B 73 134106
[31] Carter W J, Marsh S P, Fritz J N and McQueen R G 1971 Natl. Bur. Stand. (U.S.). Spec. Publ. 326 147
[32] Bi Y et al. (to be submitted)
[1] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[2] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[3] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[4] Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement
Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓). Chin. Phys. B, 2021, 30(12): 124702.
[5] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[6] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[7] Structural stability and vibrational characteristics of CaB6 under high pressure
Mingkun Liu(刘明坤), Can Tian(田灿), Xiaoli Huang(黄晓丽), Fangfei Li(李芳菲), Yanping Huang(黄艳萍), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2019, 28(6): 068101.
[8] Magnetic field analysis in a diamond anvil cell for Meissner effect measurement by using the diamond NV- center
Lin Zhao(赵琳), Donghui Yue(岳冬辉), Cailong Liu(刘才龙), Min Wang(王敏), Yonghao Han(韩永昊), Chunxiao Gao(高春晓). Chin. Phys. B, 2019, 28(3): 030702.
[9] Shock temperature and reflectivity of precompressed H2O up to 350 GPa:Approaching the interior of planets
Zhi-Yu He(贺芝宇), Hua Shu(舒桦), Xiu-Guang Huang(黄秀光), Qi-Li Zhang(张其黎), Guo Jia(贾果), Fan Zhang(张帆), Yu-Chun Tu(涂昱淳), Jun-Yue Wang(王寯越), Jun-Jian Ye(叶君建), Zhi-Yong Xie(谢志勇), Zhi-Heng Fang(方智恒), Wen-Bing Pei(裴文兵), Si-Zu Fu(傅思祖). Chin. Phys. B, 2018, 27(12): 126202.
[10] Unusual softening behavior of yield strength in niobium at high pressures
Qiu-Min Jing(敬秋民), Qiang He(何强), Yi Zhang(张毅), Shou-Rui Li(李守瑞), Lei Liu(柳雷), Qi-Yue Hou(侯琪玥), Hua-Yun Geng(耿华运), Yan Bi(毕延), Yu-Ying Yu(俞宇颖), Qiang Wu(吴强). Chin. Phys. B, 2018, 27(10): 106201.
[11] High-pressure synchrotron x-ray diffraction and Raman spectroscopic study of plumbogummite
Duan Kang(康端), Xiang Wu(巫翔), Guan Yuan(袁冠), Sheng-Xuan Huang(黄圣轩), Jing-Jing Niu(牛菁菁), Jing Gao(高静), Shan Qin(秦善). Chin. Phys. B, 2018, 27(1): 017402.
[12] High pressure x-ray diffraction techniques with synchrotron radiation
Jing Liu(刘景). Chin. Phys. B, 2016, 25(7): 076106.
[13] How to detect melting in laser heating diamond anvil cell
Liuxiang Yang(杨留响). Chin. Phys. B, 2016, 25(7): 076201.
[14] High-pressure Raman study of solid hydrogen up to 300 GPa
Xiaoli Huang(黄晓丽), Fangfei Li(李芳菲), Yanping Huang(黄艳萍), Gang Wu(吴刚), Xin Li(李鑫), Qiang Zhou(周强), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2016, 25(3): 037401.
[15] Magnetic transition of ferromagnetic material at high pressure using a novel system
Hu Tian-Li (胡天立), Wang Xin (王鑫), Han Bing (韩冰), Li Yan (李岩), Huang Feng-Xian (黄凤仙), Zhou Qiang (周强), Zhang Tao (张涛). Chin. Phys. B, 2013, 22(12): 120701.
No Suggested Reading articles found!