Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 056101    DOI: 10.1088/1674-1056/22/5/056101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of H3BO3 on the phase stability and long persistence properties of Sr3.96Al14O25:Eu0.012+, Dy0.023+ phosphor

Xie Wei (谢伟)a b c, Wang Yin-Hai (王银海)c, Zou Chang-Wei (邹长伟)a, Liang Feng (梁枫)a, Quan Jun (全军)a, Zhang Jun (张军)a, Shao Le-Xi (邵乐喜)a
a Development Center for New Materials Engineering & Technology in Universities of Guangdong, Zhanjiang Normal University, Zhanjiang 524048, China;
b School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China;
c School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
Abstract  Sr3.96Al14O25:Eu2+,Dy3+ long persistent materials with different weight of H3BO3 prepared by the high temperature solid-state reaction method were characterized by X-ray powder diffraction (XRD), scanning electronic microscope (SEM), photoluminescence spectra (PL), and thermoluminescence (TL). The results of XRD indicate that the 3% addition of H3BO3 is in favor of the formation of pure phase Sr4Al14O25, and SrAl12O19 was generated when H3BO3 is in low content or high content. The average grain sizes of samples grow bigger during the increasing of H3BO3. PL spectra show that the emission peak does not shift evidently and the emission intensity changes a little, indicate that the different amount of H3BO3 have a little inference to the crystal field. The decay characteristics and TL measurement show that H3BO3 affect the afterglow properties of Sr3.96Al14O25:Eu2+,Dy3+, because the increasing of H3BO3 lead to more defects in Sr4Al14O25 matrix.
Keywords:  phosphor      afterglow      luminescence      thermoluminescence  
Received:  23 June 2012      Revised:  07 December 2012      Accepted manuscript online: 
PACS:  61.05.cp (X-ray diffraction)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  33.50.Dq (Fluorescence and phosphorescence spectra)  
  66.30.Ma (Diffusion in quantum solids (supersolidity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21271048, 11147152, and 61106124) and the Natural Science Fund of Zhanjiang Normal University of China (Grant No. QL1020).
Corresponding Authors:  Wang Yin-Hai     E-mail:  carlxw@163.com

Cite this article: 

Xie Wei (谢伟), Wang Yin-Hai (王银海), Zou Chang-Wei (邹长伟), Liang Feng (梁枫), Quan Jun (全军), Zhang Jun (张军), Shao Le-Xi (邵乐喜) Effect of H3BO3 on the phase stability and long persistence properties of Sr3.96Al14O25:Eu0.012+, Dy0.023+ phosphor 2013 Chin. Phys. B 22 056101

[1] Huang P, Cui C E and Wang S 2009 Chin. Phys. B 18 4524
[2] Xie W, Wang Y H, Hu Y H, Wu H Y, Deng L Y and Liao F 2010 Acta Phys. Sin. 59 1148 (in Chinese)
[3] Jiang Z Q, Wang Y H and Gong Y 2010 Chin. Phys. B 19 027801
[4] Zhang J C, Qin Q S, Yu M H, Zhou H L and Zhou M J 2011 Chin. Phys. B 20 094211
[5] Qiu J R, Miura K, Inouye H, Kondo Y, Mitsuyu T and Hirao K 1998 Appl. Phys. Lett. 73 1763
[6] Peng T Y, Yang H P, Pu XL, Hu B, Jiang Z C and Yan C H 2004 Mater. Lett. 58 352
[7] Xu X B, Zhou C L, He X H, Peng Z F and Yang S P 2004 Mater. Lett. 58 1087
[8] Qiu Z F, Zhou Y Y, Lu M K, Zhang A Y and Ma Q 2007 Acta Mater. 55 2615
[9] Metcalfe G D, Readinger E D, Shen H E, Woodward N T, Dierolf V and Wraback M 2009 J. Appl. Phys. 105 053101
[10] Matsuzawa T, Aoki Y, Takeuchi N and Murayama Y 1996 J. Electrochem. Soc. 143 2670
[11] Katsumata T, Nabae T, Sasajima K and Matsuzawa T 1998 J. Cryst. Growth 183 361
[12] Nag A and Kutty T R N 2003 J. Alloy. Compd. 354 221
[13] Yuan Z X, Chang C K, Mao D L and Ying W J 2004 J. Alloy. Compd. 377 268
[14] Suriyamurthy N and Panigrahi B S 2008 J. Lumin. 128 1809
[15] Lin Y H, Tang Z, Zhang Z and Nan C W 2002 Appl. Phys. Lett. 81 996
[16] Chen R, Wang Y H, Hu Y H, Hu Z F and Liu C 2008 J. Lumin. 128 1180
[17] Qiu G M, Chen Y J, Cui J Q, Geng X J, Wang H and Song B 2007 J. Rare Earth 25 86
[18] Wu Z, Gong M L, Shi J and Su Q 2008 J. Alloy. Compd. 458 134
[19] Sharma S K, Pitale S S, Malik M M, Dubey R N and Qureshi M S 2009 J. Lumin. 129 140
[20] Chang C K, Jiang L, Mao D L and Feng C L 2004 Ceram. Int. 30 285
[21] Wang D, Yin Q, Li Y and Wang M 2002 J. Lumin. 97 1
[22] Poort S H M, Blokpoel W P and Blasse G 1995 Chem. Mater. 7 1547
[23] Van Uitert L G 1967 J. Electrochem. Soc. 114 1048
[24] Ozawa L and Jaffe P M 1971 J. Electrochem. Soc. 118 1678
[25] Sakai R, Katsumata T, Komuro S and Morikawa T 1999 J. Lumin. 85 149
[26] Kubo H, Aizawa H, Katsumata T, Komuro S and Morikawa T 2005 J. Cryst. Growth 275 1767
[27] Dorenbos P 2005 J. Electrochem. Soc. 152 H107
[28] Chen R 1969 J. Electrochem. Soc. 116 1254
[29] Jahan M S, Cooke D W, Hults W L, Smith J L, Bennett B L and Maez M A 1990 J. Lumin. 47 85
[30] Cooke D W, Bennett B L, Farnum E H, Hults W L, Muenchausen R E and Smith J L 1997 Appl. Phys. Lett. 70 3594
[31] Forsythe E W, Morton D C, Tang C W and Gao Y 1998 Appl. Phys. Lett. 73 1457
[32] Xie W, Wang Y H, Hu Y H, Zhang J, Zou C W, Li D and Shao L X 2011 Acta Phys. Sin. 60 067801 (in Chinese)
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[4] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[5] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[6] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[7] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[8] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[9] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[10] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[11] Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystal
Jie Wang(王杰), Guang-Zhe Ma(马广哲), Lu Cao(曹露), Min Gao(高敏), and Dong Shi(石东). Chin. Phys. B, 2022, 31(4): 047104.
[12] Enhancing the photo-luminescence stability of CH3NH3PbI3 film with ionic liquids
Weifeng Ma(马威峰), Chunjie Ding(丁春杰), Nasrullah Wazir, Xianshuang Wang(王宪双), Denan Kong(孔德男), An Li(李安), Bingsuo Zou(邹炳锁), and Ruibin Liu(刘瑞斌). Chin. Phys. B, 2022, 31(3): 037802.
[13] Laser-modified luminescence for optical data storage
Xin Wei(魏鑫), Weiwei Zhao(赵伟玮), Ting Zheng(郑婷), Junpeng Lü(吕俊鹏), Xueyong Yuan(袁学勇), and Zhenhua Ni(倪振华). Chin. Phys. B, 2022, 31(11): 117901.
[14] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[15] Computational simulation of ionization processes in single-bubble and multi-bubble sonoluminescence
Jin-Fu Liang(梁金福), De-Feng Xiong(熊德凤), Yu An(安宇), and Wei-Zhong Chen(陈伟中). Chin. Phys. B, 2022, 31(11): 117802.
No Suggested Reading articles found!