Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 055204    DOI: 10.1088/1674-1056/22/5/055204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Synthesis of TiN/a-Si3N4 thin film by using a Mather type dense plasma focus system

T. Hussaina, R. Ahmada, N. Khalidb, Z. A. Umarb, A. Hussnainb
a Center For Advanced Studies in Physics (CASP), 1-Church Road, GC University, Lahore, Pakistan;
b Department of Physics, Government College University, 54000 Lahore, Pakistan
Abstract  A 2.3 kJ Mather type pulsed plasma focus device was used for the synthesis of a TiN/a-Si3N4 thin film at room temperature. The film was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The XRD pattern confirms the growth of polycrystalline TiN thin film. The XPS results indicate that the synthesized film is non-stoichiometric and contains titanium nitride, silicon nitride, and a phase of silicon oxy-nitride. The SEM and AFM results reveal that the surface of the synthesized film is quite smooth with 0.59 nm roughness (root-mean-square).
Keywords:  plasma focus      TiN/a-Si3N4 films      X-ray diffraction  
Received:  12 July 2012      Revised:  09 October 2012      Accepted manuscript online: 
PACS:  52.59.Hq (Dense plasma focus)  
  52.77.Dq (Plasma-based ion implantation and deposition)  
  82.80.Pv (Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))  
  68.37.Ps (Atomic force microscopy (AFM))  
Fund: Project supported by the HEC, Pakistan.
Corresponding Authors:  T. Hussain     E-mail:  tousifhussain@gmail.com

Cite this article: 

T. Hussain, R. Ahmad, N. Khalid, Z. A. Umar, A. Hussnain Synthesis of TiN/a-Si3N4 thin film by using a Mather type dense plasma focus system 2013 Chin. Phys. B 22 055204

[1] Vetter J and Rochotzki R 1990 Thin Solid Films 192 253
[2] Sproul W D 1986 Journal of Vacuum Science & Technology A 4 2874
[3] Kanamori S 1986 Thin Solid Films 136 195
[4] Hinode K, Homma Y, Horiuchi M and Takahashi T 1997 Journal of Vacuum Science & Technology A 15 2017
[5] Karlsson B, Shimshock R P, Seraphin B O and Haygarth J C 1982 Phys. Scr. 25 775
[6] Ribbing C G and Roos 1997 Proc. SPIE 3133 148
[7] Mumtaz A and Class W H 1982 Journal of Vacuum Science & Technology 20 345
[8] Nose M, Nagae T, Yokota M, Saji S, Zhou M and Nakada M 1999 Surface and Coatings Technology 116-119 296
[9] Panjan P, Navinšek B, Cvelbar A, Zalar A and Milošev I 1996 Thin Solid Films 281-282 298
[10] Hones P, Sanjines R and Levy F 1997 Surface and Coatings Technology 94-95 398
[11] Lim J W, Park J S and Kang S W 2000 J. Appl. Phys. 87 4632
[12] Marco J F, Gancedo J R, Auger M A, Sánchez O and Albella J M 2005 Surf. Interface Anal. 37 1082
[13] Hübler R, Cozza A, Marcondes T L, Souza R B and Fiori F F 2001 Surface and Coatings Technology 142-144 1078
[14] Constable C P, Yarwood J and Münz W D hrefhttp://dx.doi.org/10.1016/S0257-8972(99)00072-91999 Surface and Coatings Technology 116-119 155
[15] Sproul W D 1983 Thin Solid Films 107 141
[16] Wang D Y, Chang C L, Wong K W, Li Y W and Ho W Y 1999 Surface and Coatings Technology 120-121 388
[17] Vaz F, Rebouta L, Goudeau P, Pacaud J, Garem H, Riviére J P, Cavaleiro A and Alves E 2000 Surface and Coatings Technology 133-134 307
[18] Diserens M, Patscheider J and Lévy F 1999 Surface and Coatings Technology 120-121 158
[19] Kim K H and Park B H 1999 Chemical Vapor Deposition 5 275
[20] Vepřek S and Reiprich S 1995 Thin Solid Films 268 64
[21] Ma D, Ma S and Xu K 2004 Surface and Coatings Technology 184 182
[22] Zhang X D, Meng W J, Wang W, Rehn L E, Baldo P M and Evans R D 2004 Surface and Coatings Technology 177-178 325
[23] Jedrzejowski P, Klemberg-Sapieha J E and Martinu L 2003 Thin Solid Films 426 150
[24] Zhang P, Cai Z and Xiong W 2007 Surface and Coatings Technology 201 6819
[25] Holubář P, Jílek M and Šíma M 2000 Surface and Coatings Technology 133-134 145
[26] Holubář P, Jílek M and Šíma M 1999 Surface and Coatings Technology 120-121 184
[27] Kim K H, Choi S R and Yoon S Y 2002 Surface and Coatings Technology 161 243
[28] Vaz F, Rebouta L, Goudeau P, Girardeau T, Pacaud J, Riviére J P and Traverse A 2001 Surface and Coatings Technology 146-147 274
[29] Chawla V, Jayaganthan R and Chandra R 2010 Surface and Coatings Technology 204 1582
[30] Kim S H, Kim J K and Kim K H 2002 Thin Solid Films 420-421 360
[31] Mather J W 1965 Physics of Fluids 8 366
[32] Lee S, Tou T Y, Moo S P, Eissa M A, Gholap A V, Kwek K H, Mulyodrono S, Smith A J, Suryadi, Usada W and Zakaullah M 1988 American Journal of Physics 56 62
[33] Kant C R, Srivastava M P and Rawat R S 1998 Phys. Lett. A 239 109
[34] Srivastava M P, Mohanty S R, Annapoorni S and Rawat R S 1996 Phys. Lett. A 215 63
[35] Borthakur T K, Sahu A, Mohanty S R, Nayak B B and Acharya B S 1999 Surface Engineering 15 55
[36] Feugeas J N, Llonch E C, de Gonzalez C O and Galambos G 1988 J. Appl. Phys. 64 2648
[37] Kelly H, Lepone A, Márquez A, Lamas D and Oviedo C 1996 Plasma Sources Science and Technology 5 704
[38] Hussain T, Ahmad R, Khan I A, Siddiqui J, Khalid N, Bhatti A S and Naseem S 2009 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 267 768
[39] Barna P B, Adamik M, Lábár J, Kövér L, Tóth J, Dévényi A and Manaila R 2000 Surface and Coatings Technology 125 147
[40] Durand-Drouhin O, Santana A E, Karimi A, Derflinger V H and Schütze A 2003 Surface and Coatings Technology 163-164 260
[41] Powder diffraction file of the international center for diffraction, pdf-icdd card No. 01-074-1214
[1] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[2] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[3] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[4] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[5] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[6] Ultrafast structural dynamics using time-resolved x-ray diffraction driven by relativistic laser pulses
Chang-Qing Zhu(朱常青), Jun-Hao Tan(谭军豪), Yu-Hang He(何雨航), Jin-Guang Wang(王进光), Yi-Fei Li(李毅飞), Xin Lu(鲁欣), Ying-Jun Li(李英骏), Jie Chen(陈洁), Li-Ming Chen(陈黎明), and Jie Zhang(张杰). Chin. Phys. B, 2021, 30(9): 098701.
[7] Powder x-ray diffraction and Rietveld analysis of (C2H5NH3)2CuCl4
Yi Liu(刘义), Jun Shen(沈俊), Zunming Lu(卢遵铭), Baogen Shen(沈保根), and Liqin Yan(闫丽琴). Chin. Phys. B, 2021, 30(6): 067502.
[8] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[9] Analytical solution of crystal diffraction intensity
Wan-Li Shang(尚万里), Ao Sun(孙奥), Hua-Bin Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Xu-Fei Xie(谢旭飞), Xing-Sen Che(车兴森), Li-Fei Hou(侯立飞), Wen-Hai Zhang(张文海), Miao Li(黎淼), Jun Shi(施军), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉). Chin. Phys. B, 2021, 30(11): 116101.
[10] Investigations on ion implantation-induced strain in rotated Y-cut LiNbO3 and LiTaO3
Zhongxu Li(李忠旭), Kai Huang(黄凯), Yanda Ji(吉彦达), Yang Chen(陈阳), Xiaomeng Zhao(赵晓蒙), Min Zhou(周民), Tiangui You(游天桂), Shibin Zhang(张师斌), and Xin Ou(欧欣). Chin. Phys. B, 2021, 30(10): 106103.
[11] Isostructural phase transition-induced bulk modulus multiplication in dopant-stabilized ZrO2 solid solution
Min Wang(王敏), Wen-Shu Shen(沈文舒), Xiao-Dong Li(李晓东), Yan-Chun Li(李延春), Guo-Zhao Zhang(张国召), Cai-Long Liu(刘才龙), Lin Zhao(赵琳), Shu-Peng Lv(吕舒鹏), Chun-Xiao Gao(高春晓), Yong-Hao Han(韩永昊). Chin. Phys. B, 2019, 28(7): 076109.
[12] Characterization of structural transitions and lattice dynamics of hybrid organic-inorganic perovskite CH3NH3PbI3
Feng Jin(金峰), Jian-Ting Ji(籍建葶), Chao Xie(谢超), Yi-Meng Wang(王艺朦), Shu-Na He(贺淑娜), Lei Zhang(张磊), Zhao-Rong Yang(杨昭荣), Feng Yan(严锋), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(7): 076102.
[13] Semiconductor-metal transition in GaAs nanowires under high pressure
Yi-Lan Liang(梁艺蓝), Zhen Yao(姚震), Xue-Tong Yin(殷雪彤), Peng Wang(王鹏), Li-Xia Li(李利霞), Dong Pan(潘东), Hai-Yan Li(李海燕), Quan-Jun Li(李全军), Bing-Bing Liu(刘冰冰), Jian-Hua Zhao(赵建华). Chin. Phys. B, 2019, 28(7): 076401.
[14] Low temperature Pmmm and C2/m phases in Sr2CuO3+δ high temperature superconductor
Hai-Bo Wang(王海波), Zhen-Lin Luo(罗震林), Yuan-Jun Yang(杨远俊), Qing-Qing Liu(刘清青), Si-Xia Hu(胡思侠), Meng-Meng Yang(杨蒙蒙), Chang-Qing Jin(靳常青), Chen Gao(高琛). Chin. Phys. B, 2019, 28(5): 056103.
[15] Effect of metal fluorides on chromium ions doped bismuth borate glasses for optical applications
L Haritha, K Chandra Sekhar, R Nagaraju, G Ramadevudu, Vasanth G Sathe, Md. Shareefuddin. Chin. Phys. B, 2019, 28(3): 038101.
No Suggested Reading articles found!