Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 055201    DOI: 10.1088/1674-1056/22/5/055201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Impacts of air pressure on the evolution of nanosecond pulse discharge products

Yu Jin-Lu (于锦禄)a, He Li-Ming (何立明)a, Ding Wei (丁未)b, Wang Yu-Qian (王育虔)a, Du Chun (杜纯)a
a The Engineering Institute, Air Force Engineering University, Xi'an 710038, China;
b Department of Training, Air Force Engineering University, Xi'an 710051, China
Abstract  Based on the nonequilibrium plasma dynamics of air discharge, a dynamic model of zero-dimensional plasma is established by combining the component density equation, the Boltzmann equation, and the energy transfer equation. The evolution properties of nanosecond pulse discharge (NPD) plasma under different air pressures are calculated. The results show that air pressure has a significant impact on the NPD products and on the peak value of particle number density for particles such as O atoms, O3 molecules, N2(A3) molecules in excited states, and NO molecules. It increases at first and then decreases with the increase of air pressure. On the other hand, the peak values of particle number density for N2(B3) and N2(C3) molecules in excited states are only slightly affected by the air pressure.
Keywords:  plasma      air pressure      evolution      numerical simulation  
Received:  10 April 2012      Revised:  05 September 2012      Accepted manuscript online: 
PACS:  52.25.Jm (Ionization of plasmas)  
  52.25.Dg (Plasma kinetic equations)  
  52.65.-y (Plasma simulation)  
  34.50.Ez (Rotational and vibrational energy transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51106179 and 51276196).
Corresponding Authors:  Yu Jin-Lu     E-mail:  yujinlu1@163.com

Cite this article: 

Yu Jin-Lu (于锦禄), He Li-Ming (何立明), Ding Wei (丁未), Wang Yu-Qian (王育虔), Du Chun (杜纯) Impacts of air pressure on the evolution of nanosecond pulse discharge products 2013 Chin. Phys. B 22 055201

[1] Li Y H 2011 Advances in Aeronautical Science and Engineering 2 127 (in Chinese)
[2] Lan Y D, He L M, Ding W and Wang F 2010 Acta Phys. Sin. 59 2617 (in Chinese)
[3] Lü Y, Chen X M, Cao Z R and Wu W D 2010 Acta Phys. Sin. 59 3892 (in Chinese)
[4] Ding W, He L M and Song Z X 2010 High Volt. Engin. 36 745 (in Chinese)
[5] Starikovskaia S M 2006 J. Phys. D: Appl. Phys. 39 265
[6] Wang F, Jiang C, Kuthi A and Gundersen M A 2004 AIAA-2004-834. 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 5-8, 2004
[7] Cathey C, Wang F and Tang T 2007 45th AIAA Aerospace Sciences Meeting and Exhibit Reno, USA, January 8-11, 2007 p. 443
[8] Mozingo J A 2004 Evaluation of a Strut-Plasma Torch Combination as a Supersonic Igniter-Flameholder(Ph. D dissertation) (Virginia: Virginia Polytechnic Institute and State University)
[9] Sergey L, Dmitry Y and Campbell C 2009 J Propul. Power 25 289
[10] Charles D C, Tao T, Taisuke S and Tomonori U 2007 IEEE Trans. Plasma Sci. 35 1664
[11] Liu J B, Ronney P D and Wang F 2003 41st AIAA Aerospace Sciences Meeting and Exhibit Reno, NV, January 6-9, 2003 p. 877
[12] Shao T, Sun G S and Yan P 2006 Acta Phys. Sin. 55 5964 (in Chinese)
[13] Niessen W, Wolf O, Schruft R 1998 J. Phys. D: Appl. Phys. 31 542
[14] Mintusov E, Serdyuchenko A and Choi I 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, NV, January 7-10, 2008 p. 1106
[15] Shi F, Zhang L L and Wang D Z 2009 Chin. Phys. B 18 1177
[16] Uddi M 2008 Non-Equilibrium Kinetic Studies Of Repetitively Pulsed Nanosecond Discharge Plasma Assisted Combustion (Ph. D dissertation) (Ohio: Ohio State University)
[17] Shibkov V M and Konstantinovskij R S 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, NV, January 10-13, 2005 p. 987
[18] Kosarev I N, Aleksandrov N L, Kindysheva S V, Starikovskaia S M 2008 Combust. Flame 154 569
[19] Itikawa Y, Hayashi M, Ichimura A, Onda K, Sakimoto K, Takayanagi K, Nakamura M, Nishimura H and Takayanagi T 1986 J. Phys. Chem. Ref. Data 15 985
[20] Itikawa Y, Ichimrua A and Onda K 1989 J. Phys. Chem. Ref. Data 18 23
[21] Phelps A V and Pitchford L C 1985 Phys. Rev. A 31 2932
[22] Uddi M, Jiang N, Mintusov E, Adamovich I V and Lempert W R 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, NV, January 7-10, 2008 p. 1110
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[3] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[4] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[5] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[6] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[7] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[8] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[9] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[10] Evolution of donations on scale-free networks during a COVID-19 breakout
Xian-Jia Wang(王先甲) and Lin-Lin Wang(王琳琳). Chin. Phys. B, 2022, 31(8): 080204.
[11] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[12] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
[13] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[14] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[15] Interaction between plasma and electromagnetic field in ion source of 10 cm ECR ion thruster
Hao Mou(牟浩), Yi-Zhou Jin(金逸舟), Juan Yang(杨涓), Xu Xia(夏旭), and Yu-Liang Fu(付瑜亮). Chin. Phys. B, 2022, 31(7): 075202.
No Suggested Reading articles found!