ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
On the investigation of nonlinear waves of the Hirota and the Maxwell–Bloch equation in nonlinear optics |
Li Chuan-Zhong (李传忠)a, He Jing-Song (贺劲松)a, K. Porsezianb c |
a Department of Mathematics, Ningbo University, Ningbo 315211, China;
b Department of Physics, Pondicherry University, Puducherry 605014, India;
c Institute of Condensed Matter Theory and Solid State Optics, Friedrich-Schiller-Universität Jena, Max-Wein Platz 1, D-07743 Jena, Germany |
|
|
Abstract In this paper, considering the Hirota and Maxwell–Bloch (H-MB) equations which is governed by femtosecond pulse propagation through two-level doped fibre system, we construct the Darboux transformation of this system through linear eigenvalue problem. Using this Daurboux transformation, we generate multi-soliton, positon, and breather solutions (both bright and dark breathers) of the H-MB equations. Finally, we also construct the rogue wave solutions of the above system.
|
Received: 25 August 2012
Revised: 24 September 2012
Accepted manuscript online:
|
PACS:
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
42.65.Sf
|
(Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)
|
|
05.45.Yv
|
(Solitons)
|
|
02.30.Ik
|
(Integrable systems)
|
|
Fund: Project supported by the Natural Science Foundation of Zhejiang Province of China (Grant No. LY12A01007), the National Natural Science Foundation of China (Grant Nos. 11201251, 10971109, and 11271210), K. C. Wong Magna Fund in Ningbo University, and K. Porseizan wishes to thank the DST, DAE-BRNS, UGC, and CSIR, Government of India, for the financial support through major projects. |
Corresponding Authors:
He Jing-Song
E-mail: hejingsong@nbu.edu.cn
|
Cite this article:
Li Chuan-Zhong (李传忠), He Jing-Song (贺劲松), K. Porsezian On the investigation of nonlinear waves of the Hirota and the Maxwell–Bloch equation in nonlinear optics 2013 Chin. Phys. B 22 044208
|
[1] |
Agrawal G P 2006 Nonlinear Fibre Optics (San Diego: Academic Press)
|
[2] |
Huang G X 2001 Chin. Phys. 10 418
|
[3] |
Zheng C L, Zhang J F, Wu F M, Sheng Z M and Chen L Q 2003 Chin. Phys. 12 1009
|
[4] |
Hasegawa A and Matsumoto M 2003 Optical Solitons in Fibres (Berlin: Springer-Verlag)
|
[5] |
Porsezian K and Kuriakose V C 2009 Solitons in Nonlinear Optics: Advances and Applications -- European Journal of Physics Special Topics (Berlin: Springer-Verlag)
|
[6] |
Akhmediev N N and Ankiewicz A 1997 Solitons (London: Chapman Hall)
|
[7] |
Taylor J R 1992 Optical Solitons: Theory and Experiment (Cambridge: Cambridge University Press)
|
[8] |
Abdullaev F, Darmanyan S and Khabibullaev P 1993 Optical Solitons: Springer Series in Nonlinear Dynamics (Berlin: Springer-Verlag)
|
[9] |
Abdullaev F 1994 Theory of Solitons in Inhomogeneous Media (New York: John Wiley)
|
[10] |
Kivshar Y S and Agrawal G P 2003 Optical Solitons: From Fibers to Photonic Crystals (San Diego: Academic Press)
|
[11] |
Kharif C and Pelinovsky E 2003 Eur. J. Mech. B: Fluids 22 603
|
[12] |
Kharif C, Pelinovsky E and Slunyaev A 2009 Rogue Waves in the Ocean (Berlin: Springer)
|
[13] |
Akhmediev N, Ankiewicz A and Taki M 2009 Phys. Lett. A 373 675
|
[14] |
Akhmediev N, Soto-Crespo J M and Ankiewicz A 2009 Phys. Lett. A 373 2137
|
[15] |
Osborne A 2010 Nonlinear Ocean Waves and the Inverse Scattering Transform (New York: Elsevier)
|
[16] |
Bludov Yu V, Konotop V V and Akhmediev N 2009 Phys. Rev. A 80 033610
|
[17] |
Wen L, Li L, Li Z D, Song S W, Zhang X F and Liu W M 2011 Eur. Phys. J. D 64 473
|
[18] |
Ruderman M S 2010 Eur. Phys. J. Special Topics 185 57
|
[19] |
Moslem W M, Shukla P K and Eliasson B 2011 Europhys. Lett. 96 25002
|
[20] |
Yan Z Y 2011 Phys. Lett. A 375 4274
|
[21] |
Efimov V B, Ganshin A N, Kolmakov G V, McClintock P V E and Mezhov-Deglin L P 2010 Eur. Phys. J. Special Topics 185 181
|
[22] |
Efimov V B, Ganshin A N, Kolmakov G V, McClintock P V E and Mezhov-Deglin L P 2011 Marrakesh Morocco Mar. 20-23
|
[23] |
Solli D R, Ropers C, Koonath P and Jalali B 2007 Nature 450 1054
|
[24] |
Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G, Akhmediev N and Dudley J M 2010 Nat. Phys. 6 790
|
[25] |
Peregrine D H 1983 J. Austral. Math. Soc. B 25 16
|
[26] |
Ankiewicz A, Soto-Crespo J M and Akhmediev N 2010 Phys. Rev. E 81 046602
|
[27] |
Tao Y S and He J S 2012 Phys. Rev. E 85 026601
|
[28] |
Xu S W, He J S and Wang L H 2011 J. Phys. A: Math. Theor. 44 305203
|
[29] |
Xu S W and He J S 2012 J. Math. Phys. 53 063507
|
[30] |
Ankiewicz A, Akhmediev N and Soto-Crespo J M 2010 Phys. Rev. E 82 026602
|
[31] |
Guo B L and Lin L M 2011 Chin. Phys. Lett. 28 110202
|
[32] |
Baronio F, Degasperis A, Conforti M and Wabnitz S 2012 Phys. Rev. Lett. 109 044102
|
[33] |
Zhai B G, Zhang W G, Wang X L and Zhang H Q 2012 Nonlinear Analysis: Real World Applications 14 14
|
[34] |
Yang G Y, Li L and Jia S T 2012 Phys. Rev. E 85 046608
|
[35] |
Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 142
|
[36] |
McCall M and Hahn E L 1967 Phys. Rev. Lett. 18 908
|
[37] |
Maimistov A I and Manykin E A 1983 Sov. Phys. JETP 58 6851994
|
[38] |
Nakazawa M, Kimura Y, Kurokawa K and Suzuki K 1992 Phys. Rev. A 45 R23
|
[39] |
Nakazawa M, Suzuki K, Kimura Y and Kubota H 1992 Phys. Rev. A 45 R2682
|
[40] |
Tiofack C G L, Ekogo T B, Mohamadou A, Porsezian K and Kofane T C 2010 J. Opt. 12 085202
|
[41] |
He J S, Cheng Y and Li Y S 2002 Commun. Theor. Phys. (Beijing, China) 38 493
|
[42] |
He J S, Xu S W and Porseizan K 2012 J. Phys. Soc. Jpn. 81 033002
|
[43] |
Nakkeeran K and Porsezian K 1995 J. Phys. A: Math. Gen. 28 3817
|
[44] |
Porsezian K and Nakkeeran K 1995 J. Mod. Opt. 43 693
|
[45] |
Kodama Y 1985 Phys. Lett. A 112 193
|
[46] |
Hirota R 1973 J. Math. Phys. 14 805
|
[47] |
Porsezian K, Hasegawa A, Serkin V N, Belyaeva T L and Ganapathy R 2007 Phys. Lett. A 361 504
|
[48] |
Porsezian K and Nakkeeran K 1995 Phys. Rev. Lett. 74 2941
|
[49] |
Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer)
|
[50] |
He J S, Zhang L, Cheng Y and Li Y S 2006 Sci. China A 12 1867
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|