Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 040511    DOI: 10.1088/1674-1056/22/4/040511
GENERAL Prev   Next  

Stress distribution and surface instability of an inclined granular layer

Zheng He-Peng (郑鹤鹏)a b, Jiang Yi-Min (蒋亦民)a, Peng Zheng (彭政)a
a School of Physics and Electronics, Central South University, Changsha 410083, China;
b School of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China
Abstract  Static granular materials may avalanche suddenly under continuous quasi-static drives. The phenomenon, which is important for many engineering applications, can be explained by analyzing stability of elastic solutions. We show this for a granular layer driven by its inclination angle in gravity, of which elastic problem could be solved generally and analytically. It is found that a lost of stability may occur only at free surface of the layer. The result is considered to be relevant for understanding surface avalanches and flows observed by experiments.
Keywords:  granular matter      nonlinear elasticity      stress      surface instability  
Received:  18 June 2012      Revised:  30 August 2012      Accepted manuscript online: 
PACS:  05.70.Ce (Thermodynamic functions and equations of state)  
  45.70.Cc (Static sandpiles; granular compaction)  
  46.25.-y (Static elasticity)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10904175).
Corresponding Authors:  Jiang Yi-Min     E-mail:

Cite this article: 

Zheng He-Peng (郑鹤鹏), Jiang Yi-Min (蒋亦民), Peng Zheng (彭政) Stress distribution and surface instability of an inclined granular layer 2013 Chin. Phys. B 22 040511

[1] Lu K Q and Liu Q X 2004 Physics 33 629 (in Chinese)
[2] Sajjad H S, Li Y C, Cui F F, Zhang Q and Hou M Y 2012 Chin. Phys. B 21 014501
[3] Abdul Q, Shi Q F, Liang X W and Sun G 2010 Chin. Phys. B 19 034601
[4] Cai Q D, Chen S Y and Sheng X W 2011 Chin. Phys. B 20 024502
[5] Jia Y, Yang X Q, Deng M, Guo H P and Ye J L 2010 Chin. Phys. B 19 128202
[6] Gudehus G 2011 Physical Soil Mechanics (Berlin: Springer-Verlag)
[7] Jiang Y M and Liu M 2003 Phys. Rev. Lett. 91 144301
[8] Jiang Y M and Liu M 2009 Granular Matter. 11 139
[9] Jiang Y M, Zheng H P, Peng Z, Fu L P, Song S X, Sun Q C, Mayer M and Liu M 2012 Phys. Rev. E 85 051304
[10] Landau L D and Lifshitz E M 1987 Fluid Mechanics (Oxford: Pergamon Press)
[11] Landau L D and Lifshitz E M 1986 Theory of Elasticity (Oxford: Pergamon Press)
[12] Sun Q C, Hou M Y and Jin F 2011 Physics and Mechanics of Granular Matter (Beijing: Science Press)
[13] Qian Z W 2012 Acta Phys. Sin. 61 134301 (in Chinese)
[14] Daerr A and Douady S 1999 Nature 399 241
[15] Börzsönyi T, Ecke R E and McElwaine J N 2009 Phys. Rev. Lett. 103 178302
[16] Börzsönyi T, Halsey T C and Ecke R E 2005 Phys. Rev. Lett. 94 208001
[17] Zémerli C, Latz A and Andrä H 2012 "Constitutive Models for Static Granular Systems and Focus to the Jiang-Liu Hyperelastic Law", Berichte des Fraunhofer ITWM , Nr. 215. Kaiserslautern, Germany ISSN 1434-9973
[18] Andreotti B and Bonneau L 2009 Phys. Rev. Lett. 103 238001
[19] Bonneau L, Catelin-Jullien T and Andreotti B 2010 Phys. Rev. E 82 011309
[20] Bonneau L, Andreotti B and Clément E 2008 Phys. Rev. Lett. 101 118001
[21] Bonneau L, Andreotti B and Clément E 2007 Phys. Rev. E 75 016602
[1] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[2] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[3] Resistance law of a rod penetrating a multilayer granular raft
Zonglin Li(李宗霖), Qiang Tian(田强), and Haiyan Hu(胡海岩). Chin. Phys. B, 2023, 32(3): 034501.
[4] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[5] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[6] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[7] Influence of particle size on the breaking of aluminum particle shells
Tian-Yi Wang(王天一), Zheng-Qing Zhou(周正青), Jian-Ping Peng(彭剑平),Yu-Kun Gao(高玉坤), and Ying-Hua Zhang(张英华). Chin. Phys. B, 2022, 31(7): 076107.
[8] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[9] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[10] Mechanism analysis and improved model for stick-slip friction behavior considering stress distribution variation of interface
Jingyu Han(韩靖宇), Jiahao Ding(丁甲豪), Hongyu Wu(吴宏宇), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2022, 31(3): 034601.
[11] Correlation mechanism between force chains and friction mechanism during powder compaction
Ning Zhang(张宁), Shuai Zhang(张帅), Jian-Jun Tan(谈健君), and Wei Zhang(张炜). Chin. Phys. B, 2022, 31(2): 024501.
[12] Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2022, 31(12): 128105.
[13] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[14] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[15] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
No Suggested Reading articles found!