Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 064701    DOI: 10.1088/1674-1056/24/6/064701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Stability analysis for flow past a cylinder via lattice Boltzmann method and dynamic mode decomposition

Zhang Wei (张伟)a, Wang Yong (王勇)b, Qian Yue-Hong (钱跃竑)c
a Department of Mechanical Enignneering, National University of Singapore, 117575, Singapore;
b Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA;
c Shanghai Institute of Applied Math and Mechanics, Shanghai University, Shanghai 200072, China
Abstract  

A combination of the lattice Boltzmann method and the most recently developed dynamic mode decomposition is proposed for stability analysis. The simulations are performed on a graphical processing unit. Stability of the flow past a cylinder at supercritical state, Re=50, is studied by the combination for both the exponential growing and the limit cycle regimes. The Ritz values, energy spectrum, and modes for both regimes are presented and compared with the Koopman eigenvalues. For harmonic-like periodic flow in the limit cycle, global analysis from the combination gives the same results as those from the Koopman analysis. For transient flow as in the exponential growth regime, the combination can provide more reasonable results. It is demonstrated that the combination of the lattice Boltzmann method and the dynamic mode decomposition is powerful and can be used for stability analysis for more complex flows.

Keywords:  lattice Boltzmann      dynamic mode decomposition      stability analysis      graphical processing unit  
Received:  28 November 2014      Revised:  12 December 2014      Accepted manuscript online: 
PACS:  47.20.-k (Flow instabilities)  
  47.11.-j (Computational methods in fluid dynamics)  
  04.60.Nc (Lattice and discrete methods)  
Corresponding Authors:  Wang Yong     E-mail:  ywangcam@gmail.com, yongw2@uci.edu
About author:  47.20.-k; 47.11.-j; 04.60.Nc

Cite this article: 

Zhang Wei (张伟), Wang Yong (王勇), Qian Yue-Hong (钱跃竑) Stability analysis for flow past a cylinder via lattice Boltzmann method and dynamic mode decomposition 2015 Chin. Phys. B 24 064701

[1] Qian Y, D'Humiéres D and Lallemand P 1992 Europhys. Lett. 17 479
[2] Succi S 2001 Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford: Clarendon Press) p. 75
[3] Chen S and Doolen G 1998 Ann. Rev. Fluid Mech. 30 329
[4] Aidun C K and Clausen J R 2010 Ann. Rev. Fluid Mech. 42 439
[5] Wei Y K and Qian Y H 2012 Chin. Phys. Lett. 29 064705
[6] Sun D K, Xiang N, Jiang D, Chen K, Yi H and Ni Z H 2013 Chin. Phys. B 22 114704
[7] Chen H, Kandasamy S, Orszag S, Shock R, Succi S and Yakhot V 2003 Science 301 633
[8] Wang Y and Elghobashi S 2014 Respir. Physiol. Neurobiol. 93 1
[9] Barkley D, Blackburn H M and Sherwin S J 2008 Int. J. Numer. Methods Fluids 57 1435
[10] Worthing R, Mozer J and Seeley G 1997 Phys. Rev. E 56 2243
[11] Brownlee R, Gorban a and Levesley J 2007 Phys. Rev. E 75 036711
[12] Åkervik E, Brandt L, Henningson D S, Hoepffner J, Marxen O and Schlatter P 2006 Phys. Fluids 18 068102
[13] Schmid P J 2010 J. Fluid Mech. 656 5
[14] Bagheri S 2013 J. Fluid Mech. 726 596
[15] Schmid P J, Li L, Juniper M P and Pust O 2011 Theor. Comput. Fluid Dyn. 25 249
[16] Chen K K, Tu J H and Rowley C W 2012 J. Nonlinear Sci. 22 887
[17] Fatahalian K and Houston M 2008 Commun. ACM 51 50
[18] Tölke J and Krafczyk M 2008 Int. J. Comut. Fluid Dyn. 22 443
[19] Bhatnagar P, Gross E and Krook M 1954 Phys. Rev. 94 511
[20] Januszewski M and Kostur M 2014 Comput. Phys. Commun. 185 2350
[21] Palabos 2014 http://www.palabos.org/
[2014]
[22] Blue Waters 2014 https://bluewaters.ncsa.illinois.edu/
[2014]
[23] Zdravkovich M M 1997 Flow around Circular Cylinders, Vol. 1 (Oxford: Oxford University Press) p. 672
[24] Williamson C and Brown G 1998 J. Fluids Struct. 12 1073
[25] Williamson C 1996 Exp. Therm. Fluid Sci. 12 150
[26] Barkley D 2006 Europhys. Lett. 75 750
[27] Sipp D and Lebedev A 2007 J. Fluid Mech. 593 333
[1] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[2] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[3] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[4] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[5] Theoretical study of novel B-C-O compoundswith non-diamond isoelectronic
Chao Liu(刘超) and Pan Ying(应盼). Chin. Phys. B, 2022, 31(2): 026201.
[6] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[7] An extended smart driver model considering electronic throttle angle changes with memory
Congzhi Wu(武聪智), Hongxia Ge(葛红霞), and Rongjun Cheng(程荣军). Chin. Phys. B, 2022, 31(1): 010504.
[8] Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study
Qing-Yu Zhang(张庆宇), Qi-Peng Dong(董其鹏), Shan-Lin Wang(王山林), Zhi-Jun Wang(王志军), and Jian Zhou(周健). Chin. Phys. B, 2021, 30(4): 044703.
[9] Investigation of cavitation bubble collapse in hydrophobic concave using the pseudopotential multi-relaxation-time lattice Boltzmann method
Minglei Shan(单鸣雷), Yu Yang(杨雨), Xuemeng Zhao(赵雪梦), Qingbang Han(韩庆邦), and Cheng Yao(姚澄). Chin. Phys. B, 2021, 30(4): 044701.
[10] Constructing reduced model for complex physical systems via interpolation and neural networks
Xuefang Lai(赖学方), Xiaolong Wang(王晓龙, and Yufeng Nie(聂玉峰). Chin. Phys. B, 2021, 30(3): 030204.
[11] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[12] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[13] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[14] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[15] A numerical study on pattern selection in crystal growth by using anisotropic lattice Boltzmann-phase field method
Zhaodong Zhang(张兆栋), Yuting Cao(曹宇婷), Dongke Sun(孙东科), Hui Xing(邢辉), Jincheng Wang(王锦程), Zhonghua Ni(倪中华). Chin. Phys. B, 2020, 29(2): 028103.
No Suggested Reading articles found!