Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 040303    DOI: 10.1088/1674-1056/22/4/040303
GENERAL Prev   Next  

Symmetric geometric measure and dynamics of quantum discord

Jiang Feng-Jian (蒋峰建)a b, Lü Hai-Jiang (吕海江)b, Yan Xin-Hu (闫新虎)b, Shi Ming-Jun (石名俊)a
a Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
b School of Information Engineering, Huangshan University, Huangshan 245041, China
Abstract  A symmetric measure of quantum correlation based on the Hilbert-Schmidt distance is presented in this paper. For two-qubit states, we simplify considerably the optimization procedure so that numerical evaluation can be performed efficiently. Analytical expressions for the quantum correlation are attained for some special states. We further investigate the dynamics of quantum correlation of the system qubits in the presence of independent dissipative environments. Several nontrivial aspects are demonstrated. We find that the quantum correlation can increase even if the system state is suffering from dissipative noise. Sudden changes occur, even twice, in the time evolution of quantum correlation. There exists a certain correspondence between the evolution of quantum correlation in the systems and that in the environments, and the quantum correlation in the systems will be transferred into the environments completely and asymptotically.
Keywords:  quantum correlation      geometric measure  
Received:  21 December 2012      Revised:  25 January 2013      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Fundamental Research Program of China (Grant Nos. 2007CB925200), the National Natural Science Foundation of China (Grant No. 11275083), and Natural Science Foundation of Anhui Province of China (Grant No. KJ2012B180).
Corresponding Authors:  Jiang Feng-Jian, Shi Ming-Jun     E-mail:  jfjiang@mail.ustc.edu.cn; shmj@ustc.edu.cn

Cite this article: 

Jiang Feng-Jian (蒋峰建), Lü Hai-Jiang (吕海江), Yan Xin-Hu (闫新虎), Shi Ming-Jun (石名俊) Symmetric geometric measure and dynamics of quantum discord 2013 Chin. Phys. B 22 040303

[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[3] Bennett C H, DiVincenzo D, Fuchs C, Mor T, Rains E, Shor P, Smolin J and Wootters W 1999 Phys. Rev. A 59 1070
[4] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W 1993 Phys. Rev. Lett. 70 1895
[5] Bennett C H and Wiesner S 1992 Phys. Rev. Lett. 69 2881
[6] Braunstein S, Caves C, Jozsa R, Linden N, Popescu S and Schack R 1999 Phys. Rev. Lett. 83 1054
[7] Meyer D 2000 Phys. Rev. Lett. 85 2014
[8] Vidal G 2003 Phys. Rev. Lett. 91 147902
[9] Biham E, Brassard G, Kenigsberg D and Mor T 2004 Theor. Comput. Sci. 320 15
[10] Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672
[11] Laflamme R, Cory D, Negrevergne C and Viola L 2002 Quantum Inf. Comput. 2 166
[12] Datta A, Flammia S and Caves C 2005 Phys. Rev. A 72 042316
[13] Datta A and Vidal G 2007 Phys. Rev. A 75 042310
[14] Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899
[15] Ollivier H and Zurek W 2001 Phys. Rev. Lett. 88 017901
[16] Oppenheim J, Horodecki M, Horodecki P and Horodecki R 2002 Phys. Rev. Lett. 89 180402
[17] Koashi M and Winter A 2004 Phys. Rev. A 69 022309
[18] Wang L C, Shen J and Yi X X 2011 Chin. Phys. B 20 050306
[19] Groisman B, Popescu S and Winter A 2005 Phys. Rev. A 72 032317
[20] Horodecki M, Horodecki P, Horodecki R, Oppenheim J, SenDe A, Sen U and Synak-Radtke B 2005 Phys. Rev. A 71 062307
[21] Luo S 2008 Phys. Rev. A 77 022301
[22] Rodríguez-Rosario C, Modi K, Kuah A, Shaji A and Sudarshan E C G 2008 J. Phys. A: Math. Theor. 41 205301
[23] Shabani A and Lidar D 2009 Phys. Rev. Lett. 102 100402
[24] Piani M, Horodecki P and Horodecki R 2008 Phys. Rev. Lett. 100 090502
[25] Piani M, Christandl M, Mora C E and Horodecki P 2009 Phys. Rev. Lett. 102 250503
[26] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
[27] Dakić B, Vedral V and Brukner \vC 2010 Phys. Rev. Lett. 105 190502
[28] Adesso G and Datta A 2010 Phys. Rev. Lett. 105 030501
[29] Luo S and Fu S 2011 Phys. Rev. Lett. 106 120401
[30] Cavalcanti D, Aolita L, Boixo S, Modi K, Piani M and Winter A 2011 Phys. Rev. A 83 032324
[31] Madhok V and Datta A 2011 Phys. Rev. A 83 032323
[32] Streltsov A, Kampermann H and Bruβ D 2011 Phys. Rev. Lett. 106 160401
[33] Piani M, Gharibian S, Adesso G, Calsamiglia J, Horodecki P and Winter A 2011 Phys. Rev. Lett. 106 220403
[34] Datta A, Shaji A and Caves C 2008 Phys. Rev. Lett. 100 050502
[35] Merali Z 2011 Nature 474 24
[36] Miranowicz Adam, Horodecki Pawel, Chhajlany Ravindra W, Tuziemski Jan and Sperling Jan 2012 Phys. Rev. A 86 042123
[37] Terhal B, Horodecki M, Leung D and DiVincenzo D 2002 J. Math. Phys. 43 4286
[38] Yu T and Eberly J 2004 Phys. Rev. Lett. 93 140404
[39] Eberly J and Yu T 2007 Science 316 555
[40] Yu T and Eberly J 2009 Science 323 598
[41] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[42] Maziero J, Céleri L, Serra R and Vedral V 2009 Phys. Rev. A 80 044102
[43] Maziero J, Werlang T, Fanchini F, Céleri L and Serra R 2010 Phys. Rev. A 81 022116
[44] Werlang T, Souza S, Fanchini F and Boas C 2009 Phys. Rev. A 80 024103
[45] Wang B, Xu Z, Chen Z and Feng M 2010 Phys. Rev. A 81 014101
[46] Fanchini F, Werlang T, Brasil C, Arruda L and Caldeira A 2010 Phys. Rev. A 81 052107
[47] Bengtsson I and Życzkowski K 2006 Geometry of Quantum State: An Introduction to Quantum Entanglement (Cambridge: Cambridge University Press)
[48] Breuer H P and Petruccione F 2002 The Theory of Open Quantum System (Oxford: Oxford University Press)
[49] Luo S and Fu S 2010 Phys. Rev. A 82 034302
[50] Lu X M, Xi Z, Sun Z and Wang X 2010 Quantum Inf. Comput. 10 994
[51] Ciccarello F and Giovannetti V 2011 arXiv: quant-ph/1105.5551
[52] Streltsov A, Kampermann H and Bru? D 2011 Phys. Rev. Lett. 107 170502
[53] Ferraro A, Aolita L, Cavalcanti D, Cucchietti F and Acín A 2010 Phys. Rev. A 81 052318
[1] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[2] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[3] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[4] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[5] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[6] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[7] Relations between tangle and I concurrence for even n-qubit states
Xin-Wei Zha(查新未), Ning Miao(苗宁), Ke Li(李轲). Chin. Phys. B, 2019, 28(12): 120304.
[8] Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems
Meng Qin(秦猛), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(6): 060301.
[9] Quantum correlations dynamics of three-qubit states coupled to an XY spin chain:Role of coupling strengths
Shao-Ying Yin(尹少英), Qing-Xin Liu(刘庆欣), Jie Song(宋杰), Xue-Xin Xu(许学新), Ke-Ya Zhou(周可雅), Shu-Tian Liu(刘树田). Chin. Phys. B, 2017, 26(10): 100501.
[10] Optimizing quantum correlation dynamics by weak measurement in dissipative environment
Du Shao-Jiang (杜少将), Xia Yun-Jie (夏云杰), Duan De-Yang (段德洋), Zhang Lu (张路), Gao Qiang (高强). Chin. Phys. B, 2015, 24(4): 044205.
[11] Dynamical decoupling pulses on the quantum correlations for the system of superconducting quantum circuit
Wang Dong-Mei (王冬梅), Qian Yi (钱懿), Xu Jing-Bo (许晶波), Yu You-Hong (俞攸红). Chin. Phys. B, 2015, 24(11): 110304.
[12] Rise of quantum correlations in non-Markovian environments in continuous-variable systems
Liu Xin (刘辛), Wu Wei (吴薇). Chin. Phys. B, 2014, 23(7): 070303.
[13] Measurement-induced disturbance in Heisenberg XY spin model with Dzialoshinskii-Moriya interaction under intrinsic decoherence
Shen Cheng-Gao (沈诚诰), Zhang Guo-Feng (张国锋), Fan Kai-Ming (樊开明), Zhu Han-Jie (朱汉杰). Chin. Phys. B, 2014, 23(5): 050310.
[14] Correlation dynamics of a qubit–qutrit system in a spin-chain environment with Dzyaloshinsky–Moriya interaction
Yang Yang (杨阳), Wang An-Min (王安民). Chin. Phys. B, 2014, 23(2): 020307.
[15] Quantum correlation switches for dipole arrays
Li Yan-Jie (李艳杰), Liu Jin-Ming (刘金明), Zhang Yan (张燕). Chin. Phys. B, 2014, 23(11): 110306.
No Suggested Reading articles found!