|
|
Symmetric geometric measure and dynamics of quantum discord |
Jiang Feng-Jian (蒋峰建)a b, Lü Hai-Jiang (吕海江)b, Yan Xin-Hu (闫新虎)b, Shi Ming-Jun (石名俊)a |
a Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
b School of Information Engineering, Huangshan University, Huangshan 245041, China |
|
|
Abstract A symmetric measure of quantum correlation based on the Hilbert-Schmidt distance is presented in this paper. For two-qubit states, we simplify considerably the optimization procedure so that numerical evaluation can be performed efficiently. Analytical expressions for the quantum correlation are attained for some special states. We further investigate the dynamics of quantum correlation of the system qubits in the presence of independent dissipative environments. Several nontrivial aspects are demonstrated. We find that the quantum correlation can increase even if the system state is suffering from dissipative noise. Sudden changes occur, even twice, in the time evolution of quantum correlation. There exists a certain correspondence between the evolution of quantum correlation in the systems and that in the environments, and the quantum correlation in the systems will be transferred into the environments completely and asymptotically.
|
Received: 21 December 2012
Revised: 25 January 2013
Accepted manuscript online:
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Fundamental Research Program of China (Grant Nos. 2007CB925200), the National Natural Science Foundation of China (Grant No. 11275083), and Natural Science Foundation of Anhui Province of China (Grant No. KJ2012B180). |
Corresponding Authors:
Jiang Feng-Jian, Shi Ming-Jun
E-mail: jfjiang@mail.ustc.edu.cn; shmj@ustc.edu.cn
|
Cite this article:
Jiang Feng-Jian (蒋峰建), Lü Hai-Jiang (吕海江), Yan Xin-Hu (闫新虎), Shi Ming-Jun (石名俊) Symmetric geometric measure and dynamics of quantum discord 2013 Chin. Phys. B 22 040303
|
[1] |
Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
|
[2] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[3] |
Bennett C H, DiVincenzo D, Fuchs C, Mor T, Rains E, Shor P, Smolin J and Wootters W 1999 Phys. Rev. A 59 1070
|
[4] |
Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W 1993 Phys. Rev. Lett. 70 1895
|
[5] |
Bennett C H and Wiesner S 1992 Phys. Rev. Lett. 69 2881
|
[6] |
Braunstein S, Caves C, Jozsa R, Linden N, Popescu S and Schack R 1999 Phys. Rev. Lett. 83 1054
|
[7] |
Meyer D 2000 Phys. Rev. Lett. 85 2014
|
[8] |
Vidal G 2003 Phys. Rev. Lett. 91 147902
|
[9] |
Biham E, Brassard G, Kenigsberg D and Mor T 2004 Theor. Comput. Sci. 320 15
|
[10] |
Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672
|
[11] |
Laflamme R, Cory D, Negrevergne C and Viola L 2002 Quantum Inf. Comput. 2 166
|
[12] |
Datta A, Flammia S and Caves C 2005 Phys. Rev. A 72 042316
|
[13] |
Datta A and Vidal G 2007 Phys. Rev. A 75 042310
|
[14] |
Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899
|
[15] |
Ollivier H and Zurek W 2001 Phys. Rev. Lett. 88 017901
|
[16] |
Oppenheim J, Horodecki M, Horodecki P and Horodecki R 2002 Phys. Rev. Lett. 89 180402
|
[17] |
Koashi M and Winter A 2004 Phys. Rev. A 69 022309
|
[18] |
Wang L C, Shen J and Yi X X 2011 Chin. Phys. B 20 050306
|
[19] |
Groisman B, Popescu S and Winter A 2005 Phys. Rev. A 72 032317
|
[20] |
Horodecki M, Horodecki P, Horodecki R, Oppenheim J, SenDe A, Sen U and Synak-Radtke B 2005 Phys. Rev. A 71 062307
|
[21] |
Luo S 2008 Phys. Rev. A 77 022301
|
[22] |
Rodríguez-Rosario C, Modi K, Kuah A, Shaji A and Sudarshan E C G 2008 J. Phys. A: Math. Theor. 41 205301
|
[23] |
Shabani A and Lidar D 2009 Phys. Rev. Lett. 102 100402
|
[24] |
Piani M, Horodecki P and Horodecki R 2008 Phys. Rev. Lett. 100 090502
|
[25] |
Piani M, Christandl M, Mora C E and Horodecki P 2009 Phys. Rev. Lett. 102 250503
|
[26] |
Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
|
[27] |
Dakić B, Vedral V and Brukner \vC 2010 Phys. Rev. Lett. 105 190502
|
[28] |
Adesso G and Datta A 2010 Phys. Rev. Lett. 105 030501
|
[29] |
Luo S and Fu S 2011 Phys. Rev. Lett. 106 120401
|
[30] |
Cavalcanti D, Aolita L, Boixo S, Modi K, Piani M and Winter A 2011 Phys. Rev. A 83 032324
|
[31] |
Madhok V and Datta A 2011 Phys. Rev. A 83 032323
|
[32] |
Streltsov A, Kampermann H and Bruβ D 2011 Phys. Rev. Lett. 106 160401
|
[33] |
Piani M, Gharibian S, Adesso G, Calsamiglia J, Horodecki P and Winter A 2011 Phys. Rev. Lett. 106 220403
|
[34] |
Datta A, Shaji A and Caves C 2008 Phys. Rev. Lett. 100 050502
|
[35] |
Merali Z 2011 Nature 474 24
|
[36] |
Miranowicz Adam, Horodecki Pawel, Chhajlany Ravindra W, Tuziemski Jan and Sperling Jan 2012 Phys. Rev. A 86 042123
|
[37] |
Terhal B, Horodecki M, Leung D and DiVincenzo D 2002 J. Math. Phys. 43 4286
|
[38] |
Yu T and Eberly J 2004 Phys. Rev. Lett. 93 140404
|
[39] |
Eberly J and Yu T 2007 Science 316 555
|
[40] |
Yu T and Eberly J 2009 Science 323 598
|
[41] |
Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
|
[42] |
Maziero J, Céleri L, Serra R and Vedral V 2009 Phys. Rev. A 80 044102
|
[43] |
Maziero J, Werlang T, Fanchini F, Céleri L and Serra R 2010 Phys. Rev. A 81 022116
|
[44] |
Werlang T, Souza S, Fanchini F and Boas C 2009 Phys. Rev. A 80 024103
|
[45] |
Wang B, Xu Z, Chen Z and Feng M 2010 Phys. Rev. A 81 014101
|
[46] |
Fanchini F, Werlang T, Brasil C, Arruda L and Caldeira A 2010 Phys. Rev. A 81 052107
|
[47] |
Bengtsson I and Życzkowski K 2006 Geometry of Quantum State: An Introduction to Quantum Entanglement (Cambridge: Cambridge University Press)
|
[48] |
Breuer H P and Petruccione F 2002 The Theory of Open Quantum System (Oxford: Oxford University Press)
|
[49] |
Luo S and Fu S 2010 Phys. Rev. A 82 034302
|
[50] |
Lu X M, Xi Z, Sun Z and Wang X 2010 Quantum Inf. Comput. 10 994
|
[51] |
Ciccarello F and Giovannetti V 2011 arXiv: quant-ph/1105.5551
|
[52] |
Streltsov A, Kampermann H and Bru? D 2011 Phys. Rev. Lett. 107 170502
|
[53] |
Ferraro A, Aolita L, Cavalcanti D, Cucchietti F and Acín A 2010 Phys. Rev. A 81 052318
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|