Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 110306    DOI: 10.1088/1674-1056/23/11/110306
GENERAL Prev   Next  

Quantum correlation switches for dipole arrays

Li Yan-Jie (李艳杰), Liu Jin-Ming (刘金明), Zhang Yan (张燕)
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
Abstract  We investigate the characteristics of three kinds of quantum correlations, measured by pairwise quantum discord (QD), geometric measure of quantum discord (GMQD), and measurement-induced disturbance (MID), in the systems of three- and four-dipole arrays. The influence of the temperature on the three quantum correlations and entanglement of the systems is also analyzed numerically. It is found that novel quantum correlation switches called QD, GMQD, and MID respectively can be constructed with the qubits consisting of electric dipoles coupled by the dipole-dipole interaction and oriented along or against the external electric field. Moreover, with the increase of temperature, QD, GMQD, and MID are more robust than entanglement against the thermal environment. It is also found that for each dipole pair of the three- and four-dipole arrangements, the MID is always the largest and the GMQD the smallest.
Keywords:  dipole arrays      quantum discord      geometric measure of quantum discord      measurement-induced disturbance  
Received:  28 January 2014      Revised:  04 May 2014      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174081, 11034002, 11134003, 11104075, and 60708003), the National Basic Research Program of China (Grant Nos. 2011CB921602 and 2012CB821302), and the Open Fund from the State Key Laboratory of Precision Spectroscopy of East China Normal University, China.
Corresponding Authors:  Liu Jin-Ming     E-mail:  jmliu@phy.ecnu.edu.cn

Cite this article: 

Li Yan-Jie (李艳杰), Liu Jin-Ming (刘金明), Zhang Yan (张燕) Quantum correlation switches for dipole arrays 2014 Chin. Phys. B 23 110306

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[3] Niest J and Cerf N J 2006 Phys. Rev. A 74 052103
[4] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[5] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
[6] Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655
[7] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[8] Luo S 2008 Phys. Rev. A 77 042303
[9] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[10] Girolami D and Adesso G 2011 Phys. Rev. A 83 052108
[11] Chen Q, Zhang C J, Yu S X, Yi X X and Oh C H 2011 Phys. Rev. A 84 042313
[12] Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
[13] Luo S and Fu S 2010 Phys. Rev. A 82 034302
[14] Luo S 2008 Phys. Rev. A 77 022301
[15] Krems R, Friedrich B and Stwalley W C 2009 Cold Molecules: Theory, Experiment, Applications (London: Taylor Francis)
[16] Ni K K, Ospelkaus S, de Miranda M H G, Pe'er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S and Ye J 2008 Science 322 231
[17] Carr L D, DeMille D, Krems R V and Ye J 2009 New J. Phys. 11 055049
[18] Dulieu O and Gabbanini C 2009 Rep. Prog. Phys. 72 086401
[19] Quemener G and Julienne P S 2012 Chem. Rev. 112 4949
[20] Andre A, DeMille D, Doyle J M, Lukin M D, Maxwell S E, Rabl P, Schoelkopf R J and Zoller P 2006 Nat. Phys. 2 636
[21] Rabl P, DeMille D, Doyle J M, Lukin M D, Schoelkopf R J and Zoller P 2006 Phys. Rev. Lett. 97 033003
[22] Tordrup K, Negretti A and Molmer K 2008 Phys. Rev. Lett. 101 040501
[23] Chen Q, Yang W and Feng M 2012 Phys. Rev. A 86 045801
[24] DeMille D 2002 Phys. Rev. Lett. 88 067901
[25] Yelin S F, Kirby K and Cote R 2006 Phys. Rev. A 74 050301
[26] Charron E, Milman P, Keller A and Atabek O 2007 Phys. Rev. A 75 033414
[27] Kuznetsova E, Gacesa M, Yelin S F and Cote R 2010 Phys. Rev. A 81 030301
[28] Zhu J, Kais S, Wei Q, Herschbach D and Friedrich B 2013 J. Chem. Phys. 138 024104
[29] Xue P and Wu J Z 2012 Chin. Phys. B 21 010308
[30] Wei Q, Kais S and Chen Y P 2010 J. Chem. Phys. 132 121104
[31] Ficek Z and Swain S 2005 Quantum Interference and Coherence: Theory and Experiments (New York: Springer)
[32] Groisman B, Popescu S and Winter A 2005 Phys. Rev. A 72 032317
[33] Schumacher B and Westmoreland M D 2006 Phys. Rev. A 74 042305
[34] Vedral V 2002 Rev. Mod. Phys. 74 197
[35] Guo H, Liu J M, Zhang C J and Oh C H 2012 Quantum Inf. Comput. 12 0677
[36] Daoud M and Ahl Laamara R 2012 Phys. Lett. A 376 2361
[37] Yao Y, Li H W, Zhang C M, Yin Z Q, Chen W, Guo G C and Han Z F 2012 Phys. Rev. A 86 042102
[38] Xiao R L, Xiao X and Zhong W J 2013 Chin. Phys. B 22 080306
[39] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[40] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[41] Hu M L and Fan H 2012 Ann. Phys. 327 851
[42] Zhang J S, Chen L, Abdel-Aty M and Chen A X 2012 Eur. Phys. J. D 66 2
[43] Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G and Saffman M 2009 Nat. Phys. 5 110
[44] Wilk T, Gaetan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P and Browaeys A 2010 Phys. Rev. Lett. 104 010502
[45] Ulmanis J, Deiglmayr J, Repp M, Wester R and Weidemuller M 2012 Chem. Rev. 112 4890
[46] Koch C P and Shapiro M 2012 Chem. Rev. 112 4928
[47] Aymar M and Dulieua O 2005 J. Chem. Phys. 122 204302
[48] Chang D E, Thompson J D, Park H, Vuletić V, Zibrov A S, Zoller P and Lukin M D 2009 Phys. Rev. Lett. 103 123004
[49] Murphy B and Hau L V 2009 Phys. Rev. Lett. 102 033003
[1] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[2] Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments
Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(3): 037302.
[3] A two-dimensional quantum walk driven by a single two-side coin
Quan Lin(林泉), Hao Qin(秦豪) Kun-Kun Wang(王坤坤), Lei Xiao(肖磊), and Peng Xue(薛鹏). Chin. Phys. B, 2020, 29(11): 110303.
[4] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[5] Quantum discord of two-qutrit system under quantum-jump-based feedback control
Chang Wang(王畅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2019, 28(12): 120302.
[6] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[7] Thermal quantum correlations of a spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya interaction
Yidan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2018, 27(9): 090306.
[8] Comparative investigation of freezing phenomena for quantum coherence and correlations
Lian-Wu Yang(杨连武), Wei Han(韩伟), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(4): 040302.
[9] Some studies of the interaction between two two-level atoms and SU(1, 1) quantum systems
T M El-Shahat, M Kh Ismail. Chin. Phys. B, 2018, 27(10): 100201.
[10] Geometric global quantum discord of two-qubit states
Yunlong Xiao(肖运龙), Tao Li(李陶), Shao-Ming Fei(费少明), Naihuan Jing(景乃桓), Zhi-Xi Wang(王志玺), Xianqing Li-Jost(李先清). Chin. Phys. B, 2016, 25(3): 030301.
[11] Phase effect on dynamics of quantum discord modulated by interaction between qubits
Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2015, 24(9): 090303.
[12] Quantum correlation dynamics in a two-qubit Heisenberg XYZ model with decoherence
Yang Guo-Hui (杨国晖), Zhang Bing-Bing (张冰冰), Li Lei (李磊). Chin. Phys. B, 2015, 24(6): 060302.
[13] Dynamics of super-quantum discord and direct control with weak measurement in open quantum system
Ji Ying-Hua (嵇英华). Chin. Phys. B, 2015, 24(12): 120302.
[14] Characterizing the dynamics of quantum discord under phase damping with POVM measurements
Jiang Feng-Jian (蒋峰建), Ye Jian-Feng (叶剑锋), Yan Xin-Hu (闫新虎), Lü Hai-Jiang (吕海江). Chin. Phys. B, 2015, 24(10): 100304.
[15] Quantum correlations in a two-qubit anisotropic Heisenberg XYZ chain with uniform magnetic field
Li Lei (李磊), Yang Guo-Hui (杨国晖). Chin. Phys. B, 2014, 23(7): 070306.
No Suggested Reading articles found!