Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 040302    DOI: 10.1088/1674-1056/22/4/040302
GENERAL Prev   Next  

Relativistic symmetries in Rosen–Morse potential and tensor interaction using the Nikiforov–Uvarov method

Sameer M Ikhdaira b, Majid Hamzavic
a Department of Electrical and Electronic Engineering, Near East University, 922022 Nicosia, Northern Cyprus, Mersin 10, Turkey;
b Department of Physics, Faculty of Science, An-Najah National University, Nablus, West Bank, Palestine;
c Department of Science and Engineering, Abhar Branch, Islamic Azad University, Abhar, Iran
Abstract  Approximate analytical bound-state solutions of the Dirac particle in the fields of attractive and repulsive Rosen-Morse (RM) potentials including Coulomb-like tensor (CLT) potential are obtained for arbitrary spin-orbit quantum number κ. The Pekeris approximation is used to deal with the spin-orbit coupling terms κ (κ ± 1)r-2. In the presence of exact spin and pseudospin (p-spin) symmetries, the energy eigenvalues and the corresponding normalized two-component wave functions are found by using the parametric generalization of the Nikiforov–Uvarov (NU) method. The numerical results show that the CLT interaction removes degeneracies between spin and p-spin state doublets.
Keywords:  Dirac equation      RM potential      CLT potential      spin and p-spin symmetries      NU method      approximation schemes  
Received:  02 May 2012      Revised:  28 October 2012      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Fd (Algebraic methods)  
  03.65.Pm (Relativistic wave equations)  
  02.30.Gp (Special functions)  
Fund: Project partially supported by the Scientific and Technological Research Council of Turkey (Grant No. TÜBÍTAK).
Corresponding Authors:  Majid Hamzavi     E-mail:  majid.hamzavi@gmail.com

Cite this article: 

Sameer M Ikhdair, Majid Hamzavi Relativistic symmetries in Rosen–Morse potential and tensor interaction using the Nikiforov–Uvarov method 2013 Chin. Phys. B 22 040302

[1] Ginocchio J N 2004 Phys. Rev. C 69 034318
[2] Ginocchio J N 1997 Phys. Rev. Lett. 78 436
[3] Ginocchio J N 2005 Phys. Rep. 414 165
[4] Page P R, Goldman T and Ginocchio J N 2001 Phys. Rev. Lett. 86 204
[5] Arima A, Harvey M and Shimizu K 1969 Phys. Lett. B 30 517
[6] Hecht K T and Adler A 1969 Nucl. Phys. A 137 129
[7] Ginocchio J N and Madland D G 1998 Phys. Rev. C 57 1167
[8] Bohr A, Hamarnoto I and Motelson B R 1982 Phys. Scr. 26 267
[9] Dudek J, Nazarewicz W, Szymanski Z and Leander G A 1987 Phys. Rev. Lett. 59 1405
[10] Troltenier D, Bahri C and Draayer J P 1995 Nucl. Phys. A 586 53
[11] Meng J, Sugawara-Tanabe K, Yamaji S, Ring P and Arima A 1998 Phys. Rev. C 58 R628
[12] Alhaidari A D, Bahlouli H and Al-Hasan A 2006 Phys. Lett. A 349 87
[13] Ikhdair S M 2012 J. Mod. Phys. 3 170
[14] Jia C S and de Souza Dutra A 2008 Ann. Phys. 323 566
[15] Ikhdair S M 2009 Chem. Phys. 361 9
[16] Xu Y, He S and Jia C S 2008 J. Phys. A: Math. Theor. 41 255302
[17] Akcay H 2009 J. Phys. A: Math. Theor. 42 198001
[18] de Souza Dutra A and Jia C S 2006 Phys. Lett. A 352 484
[19] Ikhdair S M 2012 Mol. Phys. 110 1415
[20] Sever R and Tezcan C 2008 Int. J. Mod. Phys. E 17 1327
[21] Ikhdair S M and Sever R 2009 Int. J. Mod. Phys. C 20 361
[22] de Souza Dutra A and Almeida C A S 2000 Phys. Lett. A 275 25
[23] Hamzavi M, Ikhdair S M and Solaimani M 2012 Int. J. Mod. Phys. E 21 1250016
[24] Ikhdair S M 2012 Cent. Eur. J. Phys. 10 361
[25] Ikhdair S M and Sever R 2009 Phys. Scr. 79 035002
[26] Ikhdair S M 2009 Eur. Phys. J. A 39 307
[27] Ikhdair S M 2009 Eur. Phys. J. A 40 143
[28] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Berlin: Birkhauser)
[29] Ikhdair S M and Sever R 2011 J. Math. Phys. 52 122108
[30] Boztosun I and Karakoc M 2007 Chin. Phys. Lett. 24 3028
[31] Kocak M 2007 Chin. Phys. Lett. 24 315
[32] Koc R, Tütüncüler H and Olgar E 2006 Chin. Phys. Lett. 23 539
[33] Liang Z, Cao Z Q, Deng X X and Shen Q S 2005 Chin. Phys. Lett. 22 2465
[34] Zhang S Q and Li Z B 2004 Chin. Phys. Lett. 21 223
[35] Hai W H 1998 Chin. Phys. Lett. 15 472
[36] Zhang F L, Yuan B and Liang M L 2007 Acta Phys. Sin. 56 3683 (in Chinese)
[37] Wang Z B and Zhang M C 2006 Acta Phys. Sin. 55 6229 (in Chinese)
[38] Wang Z B and Zhang M C 2006 Acta Phys. Sin. 55 525 (in Chinese)
[39] Wang Z B and Zhang M C 2006 Acta Phys. Sin. 55 521 (in Chinese)
[40] Li N, Ju G X and Ren Z Z 2005 Acta Phys. Sin. 54 2520 (in Chinese)
[41] Chen G 2004 Acta Phys. Sin. 53 684 (in Chinese)
[42] Chen G 2004 Acta Phys. Sin. 53 680 (in Chinese)
[43] Lou Z M and Chen G 2003 Acta Phys. Sin. 52 1075 (in Chinese)
[44] Chen G and Lou Z M 2003 Acta Phys. Sin. 52 1071 (in Chinese)
[45] Chen G 2001 Acta Phys. Sin. 50 1651 (in Chinese)
[46] Chen C Y 2000 Chin. Phys. 9 731
[47] Lu H X, Liu K J, Pan J W and Zhang Y D 2000 Chin. Phys. 9 5
[48] Hou C F, Zhou Z X and Li Y 1999 Chin. Phys. 8 561
[49] Ni Z X 1999 Chin. Phys. 8 8
[50] Chen B Z 1998 Chin. Phys. 7 817
[51] Li L X and Guo G C 1998 Chin. Phys. 7 727
[52] Ni Z X 1998 Chin. Phys. 7 183
[53] Ren T Q, Li D Q, Liu S D and Zhang Q G 1995 Chin. Phys. 4 1
[54] Ikhdair S M and Hamzavi M 2012 Chin. Phys. B 21 110302
[55] Rosen N and Morse P M 1932 Phys. Rev. 42 210
[56] Jia C S, Li S C, Li Y and Sun L T 2002 Phys. Lett. A 300 115
[57] Jia C S, Li Y, Sun Y, Liu J Y and Sun L T 2003 Phys. Lett. A 311 115
[58] Compean C B and Kirchbach M 2006 J. Phys. A: Math. Gen. 39 547
[59] Ma Z Q, Gonzalez-Cisneros A, Xu B W and Dong S H 2007 Phys. Lett. A 371 180
[60] Lisboa R, Malheiro M, de Castro A S, Alberto P and Fiolhais M 2004 Phys. Rev. C 69 024319
[61] Akçay H 2009 Phys. Lett. A 373 616
[62] Alberto P, Lisboa R, Malheiro M and de Castro A S 2005 Phys. Rev. C 71 034313
[63] Akçay H and Tezcan C 2009 Int. J. Mod. Phys. C 20 930
[64] Mao G 2003 Phys. Rev. C 67 044318
[65] Furnstahl R J, Rusnak J J and Serot B D 1998 Nucl. Phys. A 632 607
[66] Ikhdair S M and Sever R 2010 Appl. Math. Comput. 216 911
[67] Aydoğdu O and Sever R 2010 Eur. Phys. J. A 43 73
[68] Aydoğdu O and Sever R 2011 Phys. Lett. B 703 379
[69] Lu J 2005 Phys. Scr. 72 349
[70] Ikhdair S M and Sever R 2010 J. Math. Phys. 51 023525
[71] Ikhdair S M 2009 Int. J. Mod. Phys. C 20 1563
[72] Bjorken J D and Drell S D 1964 Relativistic Quantum Mechanics (New York: McGraw-Hill)
[73] Hamzavi M, Ikhdair S M and Ita B I 2012 Phys. Scr. 85 045009
[74] Ikhdair S M and Hamzavi M 2012 Phys. Scr. 86 045002
[75] Pekeris C L 1934 Phys. Rev. 45 98
[1] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[2] Exact solution of the generalized Kemmer oscillator
Zi-Long Zhao(赵子龙), Chao-Yun Long(龙超云), Zheng-Wen Long(隆正文), Ting Xu(徐渟). Chin. Phys. B, 2017, 26(8): 080301.
[3] Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method
Resita Arum Sari, A Suparmi, C Cari. Chin. Phys. B, 2016, 25(1): 010301.
[4] Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential
Ade Kurniawan, A. Suparmi, C. Cari. Chin. Phys. B, 2015, 24(3): 030302.
[5] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
[6] Solution of Dirac equation around a charged rotating black hole
Lü Yan (吕嫣), Hua Wei (花巍). Chin. Phys. B, 2014, 23(4): 040403.
[7] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[8] Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method
M. Eshghi, S. M. Ikhdair. Chin. Phys. B, 2014, 23(12): 120304.
[9] Spin and pseudospin symmetric Dirac particles in the field of Tietz–Hua potential including Coulomb tensor interaction
Sameer M. Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(9): 090305.
[10] Pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries in 1+1 dimension
M. Hamzavi, A. A. Rajabi. Chin. Phys. B, 2013, 22(9): 090301.
[11] Relativistic symmetries in the Hulthén scalar–vector–tensor interactions
Majid Hamzavi, Ali Akbar Rajabi. Chin. Phys. B, 2013, 22(8): 080302.
[12] Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction
Babatunde J. Falaye, Sameer M. Ikhdair. Chin. Phys. B, 2013, 22(6): 060305.
[13] Exact solutions of Dirac equation with Pöschl–Teller double-ring-shaped Coulomb potential via Nikiforov–Uvarov method
E. Maghsoodi, H. Hassanabadi, S. Zarrinkamar. Chin. Phys. B, 2013, 22(3): 030302.
[14] Relativistic symmetry of position-dependent mass particle in Coulomb field including tensor interaction
M. Eshghi, M. Hamzavi, S. M. Ikhdair. Chin. Phys. B, 2013, 22(3): 030303.
[15] Spin and pseudospin symmetries of the Dirac equation with shifted Hulthén potential using supersymmetric quantum mechanics
Akpan N. Ikot, Elham Maghsoodi, Eno J. Ibanga, Saber Zarrinkamar, Hassan Hassanabadi. Chin. Phys. B, 2013, 22(12): 120302.
No Suggested Reading articles found!