Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 040202    DOI: 10.1088/1674-1056/22/4/040202
GENERAL Prev   Next  

Finite symmetry transformation group and localized structures of (2+1)-dimensional coupled Burgers equation

Lei Ya (雷娅), Yang Duo (杨铎)
Faculty of Science, Ningbo University, Ningbo 315211, China
Abstract  In this paper, the finite symmetry transformation group of the (2+1)-dimensional coupled Burgers equation is studied by the modified direct method, and with the help of the truncated Painlevé expansion approach, some special types of localized structure for the (2+1)-dimensional coupled Burgers equation are obtained, especially, the dromion-like and solitoff-like structures.
Keywords:  finite transformation group      modified direct method      truncated Painlevé expansion approach      localized structure  
Received:  18 September 2012      Revised:  17 October 2012      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  47.10.ab (Conservation laws and constitutive relations)  
  02.30.Ik (Integrable systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11175092), the Scientific Research Fund of Education Department of Zhejiang Province of China (Grant No. Y201017148), and K. C. Wong Magna Fund in Ningbo University.
Corresponding Authors:  Yang Duo     E-mail:  1975866787@qq.com

Cite this article: 

Lei Ya (雷娅), Yang Duo (杨铎) Finite symmetry transformation group and localized structures of (2+1)-dimensional coupled Burgers equation 2013 Chin. Phys. B 22 040202

[1] Hu X R, Chen Y and Huang F 2010 Chin. Phys. B 19 080203
[2] Dong Z Z, Chen Y and Lang Y H 2010 Chin. Phys. B 19 090205
[3] Zhang S Q and Li Z B 2004 Chin. Phys. Lett. 21 223
[4] Lian Z J and Lou S Y 2004 Chin. Phys. Lett. 21 219
[5] Qu C Z, Li Z B and Yao R X 2004 Chin. Phys. Lett. 21 2077
[6] Yu F J 2011 Chin. Phys. Lett. 28 120201
[7] Lou S Y and Ma H C 2005 J. Phys. A: Math. Gen. 38 129
[8] Lou S Y and Ma H C 2006 Chaos, Solitons and Fractals 30 804
[9] Lou S Y, Jia M, Tang X Y and Huang F 2007 Phys. Rev. E 75 056318
[10] Lou S Y and Tang X Y 2004 J. Math. Phys. 45 1020
[11] Ma H C and Lou S Y 2005 Chin. Phys. 14 1495
[12] Ma H C 2005 Chin. Phys. Lett. 22 554
[13] Hu H W and Yu J 2012 Chin. Phys. B 21 020202
[14] Ma Z Y, Wu X F and Zhu J M 2007 Chaos, Solitons and Fractals 31 648
[15] Lu Z and Zhang H 2004 Phys. Lett. A 324 293
[16] Ma W X 1993 J. Phys. A: Math. Gen. 26 1169
[17] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 522
[18] Gordoa P R and Pickering A 2005 Prada J. 345 35
[19] Tang X Y and Lou S Y 2003 Chin. Phys. Lett. 20 335
[1] Lie point symmetry algebras and finite transformation groups of the general Broer--Kaup system
Jia Man(贾曼). Chin. Phys. B, 2007, 16(6): 1534-1544.
[2] NONLINEAR LOCALIZED STRUCTURE IN DUSTY PLASMA
Xie Bai-song (谢柏松), He Kai-fen (贺凯芬). Chin. Phys. B, 2001, 10(3): 214-217.
No Suggested Reading articles found!