Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 036201    DOI: 10.1088/1674-1056/22/3/036201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

A Dugdale–Barenblatt model for a strip with a semi-infinite crack embedded in decagonal quasicrystals

Li Wu (李梧)a b, Xie Ling-Yun (解凌云)b
a School of Science, Taiyuan University of Technology, Taiyuan 030024, China;
b Department of Physics, Beijing Institute of Technology, Beijing 100081, China
Abstract  The present study is to determine the solution of a strip with a semi-infinite crack embedded in decagonal quasicrystals, which transforms a physically and mathematically daunting problem. Then cohesive forces are incorporated into a plastic strip in the elastic body for nonlinear deformation. By superposing the two linear elastic fields, one is evaluated with internal loadings and the other with cohesive forces, the problem is treated in Dugdale–Barenblatt manner. A simple but yet rigorous version of the complex analysis theory is employed here, which involves conformal mapping technique. The analytical approach leads to the establishment of a few equations, which allows the exact calculation of the size of cohesive force zone and the most important physical quantity in crack theory: stress intensity factor. The analytical results of the present study may be used as the basis of fracture theory of decagonal quasicrystals.
Keywords:  quasicrystals      conformal mapping      Dugdale–Barenblatt model      stress intensity factor  
Received:  01 May 2012      Revised:  18 June 2012      Accepted manuscript online: 
PACS:  62.20.D- (Elasticity)  
  61.44.Br (Quasicrystals)  
  62.20.M- (Structural failure of materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10972035).
Corresponding Authors:  Li Wu     E-mail:  liwu823210@yahoo.com.cn

Cite this article: 

Li Wu (李梧), Xie Ling-Yun (解凌云) A Dugdale–Barenblatt model for a strip with a semi-infinite crack embedded in decagonal quasicrystals 2013 Chin. Phys. B 22 036201

[1] Shechtman D, Blech I, Gratias D and Cahn J W 1984 Phys. Rev. Lett. 53 1951
[2] Bak P 1985 Phys. Rev. Lett. 54 1517
[3] Bak P 1985 Phys. Rev. B 32 5764
[4] Lubensky T C, Ramaswamy S and Toner J 1985 Phys. Rev. B 32 7444
[5] Feuerbacher M, Bartsch M, Grushko B, Messerchmidt U and Urban K 1997 Phil. Mag. Lett. 76 369
[6] Messerchmidt U, Häussler D, Bartsch M, Geyer B, Feuerbacher M and Urban K 2000 Mat. Sci. Eng. A 294 757
[7] Edagawa K 2007 Phil. Mag. 87 2789
[8] Li L H 2010 Chin. Phys. B 19 046101
[9] Lipp H, Sonntag S and Trebin H R 2010 Phys. Rev. B 81 064302
[10] Engel M, Umezaki M and Trebin H R 2010 Phys. Rev. B 82 134206
[11] Rösch F, Rudhart C, Roth J, Trebin H R and Gumbsch P 2005 Phys. Rev. B 72 014128
[12] Takakura H Shiono M, Sato T J Yamamoto A and Tsai A P 2001 Phys. Rev. Lett. 86 236
[13] Mikulla R, Stadler J, Trebin H R and Krul F 1998 Phys. Rev. Lett. 81 3163
[14] Wang J B, Gastaldi J and Wang R H 2001 Chin. Phys. Lett. 18 88
[15] Wang J B, Mancini L, Wang R H and Gastaldi J 2003 J. Phys.: Condens. Matter 15 L363
[16] Li X F and Fan T Y 1998 Chin. Phys. Lett. 15 278
[17] Gao Y, Zhao Y T and Zhao B S 2007 Physica B 394 56
[18] Hu C Z, Ding D H and Wang R H 1994 Phys. Rev. B 49 9423
[19] Hu C Z, Wang R H and Ding D H 2000 Rep. Prog. Phys. 63 1
[20] Li W and Fan T Y 2011 Chin. Phys. B 20 036101
[21] Fan T Y and Fan L 2011 Chin. Phys. B 20 036102
[22] Gong P, Hu C Z, Zhou X, Wang A J and Miao L 2006 Chin. Phys. 15 2065
[23] Li C L and Liu Y Y 2004 Chin. Phys. 13 924
[24] Fan T Y 2010 Mathematical Theory of Elasticity of Quasicrystals and Its Applications (Heideberg: Springer-Verlag)
[25] Li X F and Fan T Y 1999 Phil. Mag. A 79 1943
[26] Wang J B, Yang W G and Wang R H 2003 J. Phys.: Condens Matter 15 1599
[27] Gao Y 2009 Int. J. Solids. Struct. 46 1849
[28] Liu G T, Fan T Y and Guo R P 2004 Int. J. Solids. Struct. 41 3949
[29] Caillard D, Vanderschaeve G and Bresson L 2000 Phil. Mag. A 80 237
[30] Bohsung J and Trebin H R 1987 Phys. Rev. Lett. 58 1204
[31] Wollgarten M, Beyss M, Urban K, Lebertz H and Koster U 1993 Phys. Rev. Lett. 71 549
[32] Rosenfeld R, Feuerbacher M, Baufeld B, Bartsch M, Wollgarten M, Hanke G, Beyss M, Messerschmidt U and Urban K 1995 Phil. Mag. Lett. 72 375
[33] Zhu A Y and Fan T Y 2008 J. Phys.: Condens Matter 20 295217
[34] Wang X F, Fan T Y and Zhu A Y 2009 Chin. Phys. B 18 709
[35] Williams J G and Hadavinia H 2002 J. Mech. Phys. Solids 50 809
[36] Jin X Q, Chaiyat S, Keer L M and Kiattikomol K 2008 J. Mech. Phys. Solids 56 1127
[37] Dugdale D S 1960 J. Mech. Phys. Solids 8 100
[38] Barrenblatt G I 1962 Adv. Appl. Mech. 7 55
[39] Muskhelishvili N I 1963 Some Basic Problems of Mathematical Theory of Elasticity (Noordhoff : Groningen)
[40] Xie L Y and Fan T Y 2011 J. Math. Phys. 52 053512
[1] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军). Chin. Phys. B, 2022, 31(8): 086101.
[2] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[3] Anti-plane problem of nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional hexagonal piezoelectric quasicrystals
Dongsheng Yang(杨东升) and Guanting Liu(刘官厅)†. Chin. Phys. B, 2020, 29(10): 104601.
[4] Modeling electric field of power metal-oxide-semiconductor field-effect transistor with dielectric trench based on Schwarz-Christoffel transformation
Zhi-Gang Wang(汪志刚), Tao Liao(廖涛), Ya-Nan Wang(王亚南). Chin. Phys. B, 2019, 28(5): 058503.
[5] Interaction between infinitely many dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal
Guan-Ting Liu(刘官厅), Li-Ying Yang(杨丽英). Chin. Phys. B, 2017, 26(9): 094601.
[6] Analytical capacitance model for 14 nm FinFET considering dual-k spacer
Fang-Lin Zheng(郑芳林), Cheng-Sheng Liu(刘程晟), Jia-Qi Ren(任佳琪), Yan-Ling Shi(石艳玲), Ya-Bin Sun(孙亚宾), Xiao-Jin Li(李小进). Chin. Phys. B, 2017, 26(7): 077303.
[7] The interaction between a screw dislocation and a wedge-shaped crack in one-dimensional hexagonal piezoelectric quasicrystals
Li-Juan Jiang(姜丽娟), Guan-Ting Liu(刘官厅). Chin. Phys. B, 2017, 26(4): 044601.
[8] Analysis of composite material interface crack face contact and friction effects using a new node-pairs contact algorithm
Zhong Zhi-Peng (钟志鹏), He Yu-Bo (何郁波), Wan Shui (万水). Chin. Phys. B, 2014, 23(6): 064601.
[9] Icosahedral quasicrystals solids with an elliptic hole under uniform heat flow
Li Lian-He (李联和), Liu Guan-Ting (刘官厅). Chin. Phys. B, 2014, 23(5): 056101.
[10] Finite size specimens with cracks of icosahedral Al–Pd–Mn quasicrystals
Yang Lian-Zhi (杨连枝), Ricoeur Andreas, He Fan-Min (何蕃民), Gao Yang (高阳). Chin. Phys. B, 2014, 23(5): 056102.
[11] Anti-plane problem analysis for icosahedral quasicrystals under shear loadings
Li Wu (李梧), Chai Yu-Zhen (柴玉珍). Chin. Phys. B, 2014, 23(11): 116201.
[12] Elliptic hole in octagonal quasicrystals
Li Lian-He (李联和). Chin. Phys. B, 2013, 22(1): 016102.
[13] Electronic and optical properties of CdS/CdZnS nanocrystals
A. John Peter, Chang Woo Lee. Chin. Phys. B, 2012, 21(8): 087302.
[14] A scaled boundary node method applied to two-dimensional crack problems
Chen Shen-Shen (陈莘莘), Li Qing-Hua (李庆华), Liu Ying-Hua (刘应华 ). Chin. Phys. B, 2012, 21(11): 110207.
[15] The relation between the generalised Eshelby integral and the generalised BCS and DB modelsvspace1mm
Fan Tian-You (范天佑) and Fan Lei(范蕾). Chin. Phys. B, 2011, 20(3): 036102.
No Suggested Reading articles found!