Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 024211    DOI: 10.1088/1674-1056/26/2/024211
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Simplified modeling of frequency behavior in photonic crystal vertical cavity surface emitting laser with tunnel injection quantum dot in active region

Mehdi Riahinasab1, Vahid Ahmadi2, Elham Darabi3
1 Department of Electrical Engineering, Science and Research Branch, Islamic Azad University Tehran, Iran;
2 Department of Electrical Engineering, Tarbiat Modares University, Tehran, Iran;
3 Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
Abstract  In this work, the characteristics of the photonic crystal tunneling injection quantum dot vertical cavity surface emitting lasers (PhC-TIQD-VCSEL) are studied through analyzing a modified modulation transfer function. The function is based on the rate equations describing the carrier dynamics at different energy levels of dot and injector well. Although the frequency modulation response component associated with carrier dynamics in wetting layer (WL) and at excited state (ES) levels of dots limits the total bandwidth in conventional QD-VCSEL, our study shows that it can be compensated for by electron tunneling from the injector well into the dot in TIQD structure. Carrier back tunneling time is one of the most important parameters, and by increment of that, the bias current dependence of the total bandwidth will be insignificant. It is proved that at high bias current, the limitation of the WL-ES level plays an important role in reducing the total bandwidth and results in rollovers on 3-dB bandwidth-I curves. In such a way, for smaller air hole diameter of photonic crystal, the effect of this reduction is stronger.
Keywords:  modulation transfer function      photonic crystal (PhC)      tunnel injection quantum dot (TIQD)      vertical cavity surface emitting laser (VCSEL)  
Received:  19 July 2016      Revised:  17 October 2016      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.55.Tv (Photonic crystal lasers and coherent effects)  
Corresponding Authors:  Mehdi Riahinasab, Vahid Ahmadi, Elham Darabi     E-mail:  m.riahinasab@srbiau.ac.ir;v_ahmadi@modares.ac.ir;e.darabi@srbiau.ac.ir

Cite this article: 

Mehdi Riahinasab, Vahid Ahmadi, Elham Darabi Simplified modeling of frequency behavior in photonic crystal vertical cavity surface emitting laser with tunnel injection quantum dot in active region 2017 Chin. Phys. B 26 024211

[1] Kirstaedter N, Schmidt O G, Ledentsov N N, Bimberg D, Ustinov V M, Egorov A, Zhukov A E, Maximov M V, Kopev P S and Alferov Z 1996 Appl. Phys. Lett. 69 1226
[2] Klotzkin D, Kamath K, Vineberg K, Bhattacharya P, Murty R and Laskar J 1998 IEEE Photon. Technol. Lett. 10 932
[3] Liu G T, Stintz A, Li H, Malloy K J and Lester L F 1999 Electron. Lett. 35 1163
[4] Sarzala R P 2004 IEEE J. Quantum Electron. 40 629
[5] Maksimov M V, Gordeev N Y, Zaitsev S V, Kop'ev P S, Kochnev I V, Ledentsov N N, Lunev A V, Ruvimov S S, Sakharov A V, Tsatsul'nikov A F, Shernyakov Y M, Alferov Z I and Bimberg D 1997 Semiconductors 31 124
[6] Shchekin O B and Deppe D G 2002 Appl. Phys. Lett. 80 3277
[7] Bimberg D, Grundmann M, Heinrichsdorff F, Ledentsov N N, Ustinov V M, Zhukov A E, Kovsh A R, Maximov M V, Shernyakov Y M and Volovik B V 2000 Thin Solid Films 367 235
[8] Yavari M H and Ahmadi V 2011 IEEE J. Sel. Top. Quantum Electron. 17 1153
[9] Razmpa Mand Emami F 2015 Quantum Electronics 45 15
[10] Fiore A and Markus A 2007 IEEE J. Quantum Electron. 43 287
[11] Wang C, Grillot F and Even J 2012 IEEE J. Quantum Electron. 48 1144
[12] Bhattacharya P, Singh J, Yoon H, Zhang X, Gutierrez-Aitken A and Lam Y 1996 IEEE J. Quantum Electron. 32 1620
[13] Zhang X, Gutierrez-Aitken A, Klotzkin D, Bhattacharya P, Caneau C and Bhat R 1997 IEEE J. Sel. Top. Quantum Electron. 3 309
[14] Yoon H, Gutierrez-Aitken A L, Jambunathan R, Singh J and Bhattacharya P K 1995 IEEE Photon. Technol. Lett. 7 974
[15] Huffaker D L and Deppe D G 1997 Appl. Phys. Lett. 71 1449
[16] Bhattacharya P, Ghosh S, Pradhan S, Singh J, Wu Z K, Urayama J, Kim K and Norris T B 2003 IEEE J. Quantum Electron. 39 952
[17] Cerulo G, Nevou L, Liverini V, Castellano F and Faist J 2012 J. Appl. Phys. 112 43702
[18] Wang W J, Li C, Zhou H Y, Wu H, Luan X X, Shi L and Guo X 2015 Chin. Phys. B 24 024209
[19] Tong C Z, Xu D W, Yoon S F, Ding Y and Fan W J 2009 IEEE J. Sel. Top. Quantum Electron. 15 743
[20] Ding Y et al. 2010 in Proc. SPIE-OSA-IEEE 7631 763102
[21] Yu S F 1996 IEEE J. Quantum Electron. 32 1168
[22] Zhao Y G and Mcinerney J G 1996 IEEE J. Quantum Electron. 32 1950
[23] Abbaspour H, Ahmadi V and Yavari M H 2011 IEEE J. Sel. Top. Quantum Electron. 17 1327
[24] Grillot F, Veselinov K, Gioannini M, Montrosset I, Even J, Piron R, Homeyer E and Loualiche S 2009 IEEE J. Quantum Electron. 45 872
[1] Confinement of Bloch surface waves in a graphene-based one-dimensional photonic crystal and sensing applications
Xiu-Juan Zou(邹秀娟), Gai-Ge Zheng(郑改革), Yun-Yun Chen(陈云云). Chin. Phys. B, 2018, 27(5): 054102.
[2] Stable single-mode operation of 894.6 nm VCSEL at high temperatures for Cs atomic sensing
Lei Xiang(向磊), Xing Zhang(张星), Jian-Wei Zhang(张建伟), Yong-Qiang Ning(宁永强), Werner Hofmann, Li-Jun Wang(王立军). Chin. Phys. B, 2017, 26(7): 074209.
[3] Solving the atmospheric scattering optical transfer function using the multi-coupled single scattering method
Sun Bin (孙斌), Hong Jin (洪津), Sun Xiao-Bing (孙晓兵). Chin. Phys. B, 2014, 23(9): 094201.
[4] Vertical cavity surface emitting laser transverse mode and polarization control by elliptical holes photonic crystal
Cao Tian (曹田), Xu Chen (徐晨), Xie Yi-Yang (解意洋), Kan Qiang (阚强), Wei Si-Min (魏思民), Mao Ming-Ming (毛明明), Chen Hong-Da (陈弘达 ). Chin. Phys. B, 2013, 22(2): 024205.
[5] Modulation transfer function characteristic of uniform-doping transmission-mode GaAs/GaAlAs photocathode
Ren Ling(任玲) and Chang Ben-Kang(常本康) . Chin. Phys. B, 2011, 20(8): 087308.
No Suggested Reading articles found!