Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030505    DOI: 10.1088/1674-1056/22/3/030505
GENERAL Prev   Next  

Hybrid three-dimensional variation and particle filtering for nonlinear systems

Leng Hong-Ze (冷洪泽), Song Jun-Qiang (宋君强)
College of Computer, National University of Defense Technology, Changsha 410073, China
Abstract  This work addresses the problem of estimating the states of nonlinear dynamic systems with sparse observations. We present a hybrid three-dimensional variation (3DVar) and particle piltering (PF) method, which combines the advantages of 3DVar and particle-based filters. By minimizing the cost function, this approach will produce a better proposal distribution of the state. Afterwards the stochastic resampling step in standard PF can be avoided through a deterministic scheme. The simulation results show that the performance of the new method is superior to the traditional ensemble Kalman filtering (EnKF) and the standard PF, especially in highly nonlinear systems.
Keywords:  three-dimensional variation (3DVar)      particle piltering (PF)      ensemble Kalman filtering (EnKF)      chaos system  
Received:  10 June 2012      Revised:  07 September 2012      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  02.60.-x (Numerical approximation and analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 41105063).
Corresponding Authors:  Leng Hong-Ze     E-mail:  hzleng@nudt.edu.cn

Cite this article: 

Leng Hong-Ze (冷洪泽), Song Jun-Qiang (宋君强) Hybrid three-dimensional variation and particle filtering for nonlinear systems 2013 Chin. Phys. B 22 030505

[1] Eubank R L 2006 A Kalman Filter Primer (Boca Raton, Fla.: Chapman& Hall/CRC)
[2] Speyer J L and Chung W H 2008 Stochastic Processes, Estimation,and Control (Philadelphia: Society for Industrial and Applied Mathematics)
[3] Psiaki M L 2005 Journal of Guidance, Control, and Dynamics 28 885
[4] Houtekamer P L and Mitchell H L 2005 Quart. J. R. Meteorol. Soc. 1313269
[5] Hunt B R, Kostelich E J and Szunyogh I 2007 Physica D 230 112
[6] Reich S 2012 Quart. J. R. Meteorol. Soc. 138 222
[7] Zhang Z T and Zhang J S 2010 Chin. Phys. B 19 104601
[8] Arulampalam M S, Maskell S, Gordon N and Clapp T 2002 IEEETrans. Signal Process. 50 174
[9] Schon T, Gustafsson F and Nordlund P 2005 IEEE Trans. Signal Process.53 2279
[10] Eyink G L and Kim S 2006 J. Stat. Phys. 123 1071
[11] Nakano S, Ueno G and Higuchi T 2007 Nonlin. Processes Geophys. 14395
[12] Vanleeuwen P J 2010 Quart. J. R. Meteorol. Soc. 136 1991
[13] Bi J, Guan W and Qi L T 2012 Chin. Phys. B 21 068901
[14] Kunihama T, Omori Y and Zhang Z 2012 J. Time Series Anal. 33 61
[15] Kotceha J H and Djuric PM2003 IEEE Trans. Signal Process. 51 2592
[16] Merwe R V D and Wan E 2003 Proceedings of the IEEE InternationalConference on Acoustics Speech, and Signal Processing (Hongkong)p. 701
[17] Míguez J 2006 Digital Signal Processing 9 1
[18] Won S P, Melek W W and Golnaraghi F 2010 IEEE Trans. IndustrialElectron. 57 1787
[19] Won S P, Melek W W and Golnaraghi F 2011 Meas. Sci. Technol. 22125108
[20] Hoteit I, Luo X and Pham D 2012 Mon. Wea. Rev. 140 528
[21] Stordal A, Karlsen H, Nvdal G, Skaug H and Vall`es B 2011 ComputationalGeosciences 15 293
[22] Edwards AW F 1972 Likelihood (Cambridge: Cambridge UniversityPress)
[23] Vanleeuwen P J 2009 Mon. Wea. Rev. 137 4089
[24] Zupanski M, Navon I M and Zupanski D 2008 Q. J. R. Meteorol. Soc.134 1039
[25] Zupanski M 2005 Mon. Wea. Rev. 133 1710
[1] A new approach to detecting weak signal in strong noise based on chaos system control
Xu Yan-Chun(徐艳春), Yang Chun-Ling(杨春玲), and Qu Xiao-Dong(瞿晓东). Chin. Phys. B, 2010, 19(3): 030516.
[2] Parameters estimation online for Lorenz system by a novel quantum-behaved particle swarm optimization
Gao Fei(高飞), Li Zhuo-Qiu(李卓球), and Tong Heng-Qing(童恒庆). Chin. Phys. B, 2008, 17(4): 1196-1201.
[3] A novel hyperchaos evolved from three dimensional modified Lorenz chaotic system
Wang Fan-Zhen(王繁珍), Chen Zeng-Qiang(陈增强), Wu Wen-Juan(吴文娟), and Yuan Zhu-Zhi(袁著祉). Chin. Phys. B, 2007, 16(11): 3238-3243.
No Suggested Reading articles found!