Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 070504    DOI: 10.1088/1674-1056/25/7/070504
GENERAL Prev   Next  

Bifurcation and chaos in high-frequency peak current mode Buck converter

Chang-Yuan Chang(常昌远), Xin Zhao(赵欣), Fan Yang(杨帆), Cheng-En Wu(吴承恩)
School of Integrated Circuit, Southeast University, Nanjing 210096, China
Abstract  Bifurcation and chaos in high-frequency peak current mode Buck converter working in continuous conduction mode (CCM) are studied in this paper. First of all, the two-dimensional discrete mapping model is established. Next, reference current at the period-doubling point and the border of inductor current are derived. Then, the bifurcation diagrams are drawn with the aid of MATLAB. Meanwhile, circuit simulations are executed with PSIM, and time domain waveforms as well as phase portraits in iL-vC plane are plotted with MATLAB on the basis of simulation data. After that, we construct the Jacobian matrix and analyze the stability of the system based on the roots of characteristic equations. Finally, the validity of theoretical analysis has been verified by circuit testing. The simulation and experimental results show that, with the increase of reference current Iref, the corresponding switching frequency f is approaching to low-frequency stage continuously when the period-doubling bifurcation happens, leading to the converter tending to be unstable. With the increase of f, the corresponding Iref decreases when the period-doubling bifurcation occurs, indicating the stable working range of the system becomes smaller.
Keywords:  peak current mode Buck converter      high frequency      bifurcation      chaos  
Received:  04 January 2016      Revised:  17 March 2016      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  84.30.Jc (Power electronics; power supply circuits)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61376029), the Fundamental Research Funds for the Central Universities, China, and the College Graduate Research and Innovation Program of Jiangsu Province, China (Grant No. SJLX150092).
Corresponding Authors:  Chang-Yuan Chang     E-mail:  ccyuan@163.com

Cite this article: 

Chang-Yuan Chang(常昌远), Xin Zhao(赵欣), Fan Yang(杨帆), Cheng-En Wu(吴承恩) Bifurcation and chaos in high-frequency peak current mode Buck converter 2016 Chin. Phys. B 25 070504

[1] Zhong S, Sha J, Xu J P, Xu L J and Zhou G H 2014 Acta Phys. Sin. 63 198401 (in Chinese)
[2] Zhang X T, Ma X K and Zhang H 2008 Acta Phys. Sin. 57 6174 (in Chinese)
[3] Zhou G H, Xu J P, Bao B C and Jin Y Y 2010 Chin. Phys. B 19 060508
[4] Lai Y M, Tse C K and Chow M H L 2001 Circ. Syst. Signal Pr. 20 695
[5] Wang F Q, Zhang H and Ma X K 2012 Chin. Phys. B 21 020505
[6] Zhusubaliyev Z T, Soukhoterin E A and Mosekilde E 2003 IEEE Trans. Circuits Syst. I 50 1047
[7] Zhusubaliyev Z T, Mosekilde E and Yanochkina O O 2011 IEEE Trans. Power Electron. 26 1270
[8] Leng M R, Zhou G H, Zhang K T and Li Z H 2015 Chin. Phys. B 24 100504
[9] Zou Y L, Luo X S and Chen G R 2006 Chin. Phys. 15 1719
[10] Poddar G, Chakrabarty K and Banerjee S 1995 IEEE Trans. Circuits Syst. I 42 502
[11] Yang Y W, Liu J L and Li B 2014 Acta Phys. Sin. 63 040502 (in Chinese)
[12] Giaouris D, Banerjee S, Mandal K, Al-Hindawi M M, Abusorrah A, Al-Turki Y and El Aroudi A 2015 Int. J. Bifur. Chaos 25 1550071
[13] Deane J H B 1992 IEEE Trans. Circuits Syst. I 39 680
[14] Chan W C Y and Tse C K 1997 IEEE Trans. Circuits Syst. I 44 1129
[15] Yang N N, Liu C X and Wu C J 2012 Chin. Phys. B 21 080503
[16] Bao B C, Yang P, Ma Z H and Zhang X 2012 Acta Phys. Sin. 61 220502 (in Chinese)
[17] Xu C D and Cheng K W E 2011 IET Power Electron. 4 209
[18] Zhou G H, Xu J P and Bao B C 2010 Acta Phys. Sin. 59 2272 (in Chinese)
[19] Xie F, Yang R and Zhang B 2010 Acta Phys. Sin. 59 8393 (in Chinese)
[20] Xie F, Yang R and Zhang B 2011 IEEE Trans. Circuits Syst. I 58 2269
[21] Hsieh F H, Wang H K, Chang P L and Syu S H 2013 Proceedings of the 2013 International Conference on Machine Learning and Cybernetics, July 14-17, 2013, Tianjin, China, p. 1796
[22] Bernardo M D and Vasca F 2000 IEEE Trans. Circuits Syst. I 47 130
[23] Simon-Muela A, Petibon S, Alonso C and Chaptal J L 2008 IEEE Trans. Ind. Electron. 55 3221
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[4] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[7] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[8] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[9] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[10] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[11] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[12] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[13] Upgrade of the magnetic diagnostic system for restart of HT-6M operation
Li-Xing Chen(陈力行), Biao Shen(沈飊), Da-Long Chen(陈大龙), Zheng-Ping Luo(罗正平),Zu-Chao Zhang(张祖超), Ying Chen(陈颖), Yong Wang(王勇), and Jin-Ping Qian(钱金平). Chin. Phys. B, 2022, 31(12): 125203.
[14] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[15] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
No Suggested Reading articles found!