INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Effect of ro-vibrational excitation of NeH+ on the stereodynamics forthe reactions H+NeH+ (v=1-3, j=1, 3, 5)→ H2++Ne |
Yin Shu-Hui (尹淑慧)a, Zou Jing-Han (邹静涵)a, Guo Ming-Xing (郭明星)b, Li Lei (李磊)a, Xu Xue-Song (许雪松)a, Gao Hong (高宏)a, Che Li (车丽)a |
a Department of Physics, Dalian Maritime University, Dalian 116026, China; b Environmental Science and Engineering College, Dalian Maritime University, Dalian 116026, China |
|
|
Abstract The stereodynamics of the abstraction reaction H+NeH+ (v=1-3, j=1, 3, 5)→ H2++Ne is studied theoretically with quasi-classical trajectory method on a new ab initio potential energy surface [Lü S J, Zhang P Y, Han K L and He G Z 2012 J. Chem. Phys. 132 014303]. The effects of vibrational and rotational excitation of reagent molecules on the polarization of product are investigated. The reaction cross sections, the distributions of P(θr), P(φr), and polarization-dependent differential cross sections (PDDCSs) are calculated. The obtained cross sections indicate that the title reaction is a typical barrierless atom (ion)-ion (molecule) reaction. The initial vibrational excitation and rotational excitation of reagent molecules have distinctly different influences on stereodynamics of title reaction, and the possible reasons for the differences are presented.
|
Received: 26 April 2012
Revised: 19 July 2012
Accepted manuscript online:
|
PACS:
|
82.20.Bc
|
(State selected dynamics and product distribution)
|
|
82.20.Kh
|
(Potential energy surfaces for chemical reactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11105022) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2012QN066 and 2011QN142). |
Corresponding Authors:
Yin Shu-Hui
E-mail: yinsh@dlmu.edu.cn
|
Cite this article:
Yin Shu-Hui (尹淑慧), Zou Jing-Han (邹静涵), Guo Ming-Xing (郭明星), Li Lei (李磊), Xu Xue-Song (许雪松), Gao Hong (高宏), Che Li (车丽) Effect of ro-vibrational excitation of NeH+ on the stereodynamics forthe reactions H+NeH+ (v=1-3, j=1, 3, 5)→ H2++Ne 2013 Chin. Phys. B 22 028201
|
[1] |
Fano U and Macek J H 1973 Rev. Mod. Phys. 45 553
|
[2] |
Case D A and Herschbach D R 1975 Mol. Phys. 30 1537
|
[3] |
Mcclelland G M and Herschbach D R 1979 J. Phys. Chem. 83 1445
|
[4] |
Barnwell J D, Loeser J G and Herschbach D R 1983 J. Phys. Chem. 87 2781
|
[5] |
Aoiz F J, Brouard M and Enriquez P A 1996 J. Chem. Phys. 105 4964
|
[6] |
Han K L, He G Z and Lou N Q 1993 Chin. Chem. Lett. 4 517
|
[7] |
Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
|
[8] |
Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
|
[9] |
Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
|
[10] |
Zhang X and Han K L 2006 Int. J. Quantum Chem. 106 1815
|
[11] |
Li R J, Han K L, Li F E, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
|
[12] |
Yin S H, Guo M X, Li L, Zhang Y H and Li X P 2011 Int. J. Quantum Chem. 111 4400
|
[13] |
Li H, Zheng B, Yin J Q and Meng Q T 2011 Chin. Phys. B 20 123401
|
[14] |
Liu Y F, He X H, Shi D H and Sun J F 2011 Chin. Phys. B 20 078201
|
[15] |
Chen Y Y and Zhao M Y 2012 J. Theor. Comput. Chem. 11 87
|
[16] |
Chen X Q, Wang M S, Yang C L and Wu J C 2012 Chin. Phys. B 21 023402
|
[17] |
Xie T X, Li S J, Shi Y and Jin M X 2012 Chin. Phys. B 21 013401
|
[18] |
Bilotta R M and Farrar J M 1981 J. Chem. Phys. 75 1776
|
[19] |
Van Pijkeren D, Boltjes E, van Eck J and Niehaus A 1984 Chem. Phys. 91 293
|
[20] |
Herman Z and Koyano I 1987 J. Chem. Soc., Faraday Trans. 83 127
|
[21] |
Zhang T, Qian X M, Tang X N, Ng C Y, Chiu Y, Levandier D J, Miller J S and Dressler R A 2003 J. Chem. Phys. 119 10175
|
[22] |
Kress J D, Walker R B, Hayes E F and Pendergast P 1994 J. Chem. Phys. 100 2728
|
[23] |
Gilibert M, Blasco R M, González M, Giménez X, Aguilar A, Last I and Baer M 1997 J. Phys. Chem. A 101 6821
|
[24] |
Gilibert M, Giménez X, Huarte-Larrañaga F, González M, Aguilar A, Last I and Baer M 1999 J. Chem. Phys. 110 6278
|
[25] |
Mayneris-Perxachs J and González M 2009 J. Phys. Chem. A 113 4105
|
[26] |
Lü S J, Zhang P Y, Han K L and He G Z 2010 J. Chem. Phys. 132 014303
|
[27] |
Xiao J, Yang C L, Wang M S and Ma X G 2011 Chin. Phys. Lett. 28 013101
|
[28] |
Xiao J, Yang C L, Wang M S and Ma X G 2011 Chem. Phys. 379 46
|
[29] |
Xiao J, Lu Y C and Wang M S 2012 Chin. Phys. B 21 043101
|
[30] |
Wang Y L, Tian B G, Qu L S, Chen J N and Li H 2011 Bull. Korean Chem. Soc. 32 12
|
[31] |
Ge M H and Zheng Y J 2011 Chin. Phys. B 20 083401
|
[32] |
Brouard M, Lambert H M, Rayner S P and Simons J P 1996 Mol. Phys. 89 403
|
[33] |
Kendall R A, Dunning T H and Harrison R J 1992 J. Chem. Phys. Lett. 96 6796
|
[34] |
Aguado A and Paniagua M 1992 J. Chem. Phys. 96 1265
|
[35] |
Han K L, Zhang L, Xu D L, He G Z and Lou N Q 2001 J. Phys. Chem. A 105 2956
|
[36] |
Gómez-Carrasco S, Hernándezb M L and Alvari J M 2007 Chem. Phys. Lett. 435 188
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|