CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Pressure dependences of elastic and lattice dynamic properties of AlAs from ab initio calculations |
Li Xing-Xiu (李兴秀)a, Tao Xiao-Ma (陶小马)a, Chen Hong-Mei (陈红梅)a, Ouyang Yi-Fang (欧阳义芳)a b, Du Yong (杜勇)b |
a College of Physical Science and Technology, Guangxi University, Nanning 530004, China; b State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
|
Abstract Ab initio calculations, based on norm-conserving nonlocal pseudopotentials and density functional theory (DFT), are performed to investigate the structural, elastic, dielectric, and vibrational properties of aluminum arsenide AlAs with zinc-blende (B3) structure and nickel arsenide (B81) structure under hydrostatic pressure. Firstly, the path for the phase transition from B3 to B81 is confirmed by analyzing the energies of different structures, which is in good agreement with previous theoretical results. Secondly, we find that the elastic constants, bulk modulus, static dielectric constants, and the optical phonon frequencies are varying in a nearly linear manner under hydrostatic pressure. What is more, the softening mode of transversal acoustic mode at X point supports the phase transition in AlAs.
|
Received: 13 May 2012
Revised: 07 September 2012
Accepted manuscript online:
|
PACS:
|
62.20.de
|
(Elastic moduli)
|
|
63.20.D-
|
(Phonon states and bands, normal modes, and phonon dispersion)
|
|
77.22.-d
|
(Dielectric properties of solids and liquids)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11047031); the Guangxi Natural Science Foundation, China (Grant No. 2011GXNSFC018003); and the Open Foundation of the Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, China (Grant No. GXKFJ09-16). |
Corresponding Authors:
Ouyang Yi-Fang
E-mail: ouyanggroup@gmail.com
|
Cite this article:
Li Xing-Xiu (李兴秀), Tao Xiao-Ma (陶小马), Chen Hong-Mei (陈红梅), Ouyang Yi-Fang (欧阳义芳), Du Yong (杜勇) Pressure dependences of elastic and lattice dynamic properties of AlAs from ab initio calculations 2013 Chin. Phys. B 22 026201
|
[1] |
Kimukin I, Biyikli N, Kartaloglu T, Aytur O and Ozbay E 2004 IEEE J. Selected Top. Quantum Electron. 10 766
|
[2] |
Liu G C, Lu Z W and Klein B M 1994 Phys. Rev. B 51 5678
|
[3] |
Greene R G, Luo H, Li T and Ruoff A L 1994 Phys. Rev. Lett. 72 2045
|
[4] |
Onodera A, Mimasaka M, Sakamoto I, Okumura J, Sakamoto K, Uehara S, Takemura K, Shimomura O, Ohtani T and Fujii Y 1999 J. Phys. Chem. Solids 60 167
|
[5] |
Froyen S and Cohen M L 1983 Phys. Rev. B 28 3258
|
[6] |
Adachi S 1987 J. Appl. Phys. 61 4869
|
[7] |
Wang H Y, Li X S, Li C Y and Wang K F 2009 Mater. Chem. Phys. 117 373
|
[8] |
Adachi S 1985 J. Appl. Phys. 58 3
|
[9] |
Amrani B 2006 Sup. Micro. 40 65
|
[10] |
Aourag H, Ferhat M, Bouhafs B, Bouarissa N, Zaoui A, Amrane N and Khelifa B 1995 Comput. Mater. Sci. 3 393
|
[11] |
Aouina NY, Mezrag F, Boucenna M, Farra ME and Bouarissa N 2005 Mater. Sci. Eng. B 123 87
|
[12] |
Annane F, Meradji H, Ghemid S and Hassan FEH 2010 Comput. Mater. Sci. 50 274
|
[13] |
Cai J and Chen N X 2007 Phys. Rev. B 75 174116
|
[14] |
Singh R K and Singh S 1992 Phys. Rev. B 45 1019
|
[15] |
Gupta D C and Kulshrestha S 2009 Phase Transitions 82 850
|
[16] |
Chetty N, Muñoz A and Martin R M 1989 Phys. Rev. B 40 11934
|
[17] |
Srivastava A, Tyagi N, Sharma U S and Singh R K 2011 Mater. Chem. Phys. 125 66
|
[18] |
Wei S H, Nie X, Batyrev I G and Zhang S B 2003 Phys. Rev. B 67 165209
|
[19] |
Godby R W 1988 Phys. Rev. B 37 10159
|
[20] |
Reshaka A H and Auluck S 2007 Physica B 395 143
|
[21] |
Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens Matter 14 2717
|
[22] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[23] |
Lin J S, Qteish A, Payne M C and Heine V 1993 Phys. Rev. B 47 4174
|
[24] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[25] |
Baroni S, Giannonzzi P and Testa A 1987 Phys. Rev. Lett. 58 1861
|
[26] |
Giannozzi P, Gironcoli S, Pavone P and Baroni S 1991 Phys. Rev. B 43 7231
|
[27] |
Gonze X, Allan D C and Teter M P 1994 Phys. Rev. Lett. 68 3603
|
[28] |
Gonze X 1997 Phys. Rev. B 55 10337
|
[29] |
CASTEP Users Guide (San Diego: Accelrys Inc., CA, 2005) and references therein
|
[30] |
Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 50 697
|
[31] |
Saitta A M and Decremps F 2004 Phys. Rev. B 70 035214
|
[32] |
Aouadi S, Hernandez P R, Kassali K and Muñoz A 2008 Phys. Lett. A 372 5340
|
[33] |
Voigt W 1928 Lehrbuch der Kristallphysik, Taubner, Leipzig
|
[34] |
Reuss A and Angew Z 1929 Math. Mech. 9 55
|
[35] |
Hill R 1952 Proc. Phys. Soc. London Sect. A 65 350
|
[36] |
Moss D J, Ghahramani E, Sipe J E and van Driel H M 1990 Phys. Rev. B 41 1542
|
[37] |
Lockwood D J, Yu G L and Rowell N L 2005 Solid State Commun. 136 404
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|