Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 020309    DOI: 10.1088/1674-1056/22/2/020309
GENERAL Prev   Next  

Quantum correlation dynamics of three non-coupled two-level atoms in different reservoirs

Wang Xiao-Yun (王小云), Ding Bang-Fu (丁邦福), Zhao He-Ping (赵鹤平)
College of Physics and Mechanical & Electrical Engineering, Jishou University, Jishou 416000, China
Abstract  Time evolution dynamics of three non-coupled two-level atoms independently interacting with their reservoirs is solved exactly by considering a damping Lorentzian spectral density. For three atoms initially prepared in Greenberger-Horne-Zeilinger-type state, quantum correlation dynamics in Markovian reservoir is compared with that in non-Markovian reservoir. By increasing detuning quantity in non-Markovian reservoir, three-atom correlation dynamics measured by negative eigenvalue presents a trapping phenomenon which provides long-time quantum entanglement. Then we compare the correlation dynamics of three atoms with that of two atoms, measured by quantum entanglement and quantum discord for initial robuster-entangled type state. The result further confirms that quantum discord is indeed different from quantum entanglement in identifying quantum correlation of many bodies.
Keywords:  quantum correlation dynamics      Lorentzian spectral density      Markovian and non-Markovian reservoirs  
Received:  04 April 2012      Revised:  06 July 2012      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104113 and 11264011) and the Natural Science Foundation of Hunan Province, China (Grant Nos. 09JJ6011 and 11JJ6007).
Corresponding Authors:  Wang Xiao-Yun, Ding Bang-Fu     E-mail:  wxyyun@163.com; dbf1982@126.com

Cite this article: 

Wang Xiao-Yun (王小云), Ding Bang-Fu (丁邦福), Zhao He-Ping (赵鹤平) Quantum correlation dynamics of three non-coupled two-level atoms in different reservoirs 2013 Chin. Phys. B 22 020309

[1] Zhou F X, Zhang L D, Qi Y H, Nim Y P, Zhang J T and Gong S Q 2011 Chin. Phys. B 20 080302
[2] Ollivier H and Zurek W H 2002 Phys. Rev. Lett. 88 017901
[3] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[4] Ji Y H and Hu J J 2010 Chin. Phys. B 19 060304
[5] Luo X Q, Wang D L, Zhang Z Q, Ding J W and Liu W M 2011 Phys. Rev. A 84 033803
[6] Tong Q J, An J H, Luo H G and Oh C H 2010 J. Phys. B: At. Mol. Opt. Phys. 43 155501
[7] Zheng Y P, Tang N, Wang G Y and Zeng H S 2011 Chin. Phys. B 20 110301
[8] Huang L Y and Fang M F 2010 Chin. Phys. B 19 090318
[9] Li J Q and Liang J Q 2010 Phys. Lett. A 374 1975
[10] Xu G F and Tong D M 2011 Chin. Phys. Lett. 28 060305
[11] Nielsen M and Chuang I 2000 Quantum Information and Computation (Cambridge: Cambridge University Press)
[12] Yan W and Zhang W J 2007 Chin. Phys. 16 2584
[13] Gao X, Sun S H and Liang L M 2009 Chin. Phys. Lett. 26 100307
[14] DiVincenzo D P 2000 Fort. Phys. 48 9
[15] Hao X, Pan T, Sha J Q and Zhu S Q 2011 Commun. Theor. Phys. 55 41
[16] Yu T and Eberly J H 2007 Quantum Information and Computation 7 459
[17] Su H Y, Deng D L and Chen J L 2010 Commun. Theor. Phys. 54 663
[18] Ding B F, Wang X Y and Zhao H P 2011 Chin. Phys. B 20 100302
[19] Luo S L 2008 Phys. Rev. A 77 042303
[20] Li J G, Zou J, Xu B M and Shao B 2011 Chin. Phys. Lett. 28 090301
[21] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
[22] An J H, Wang S J and Luo H G 2007 Physica: A Statistical Mechanics and Its Applications 382 753
[23] Benatti F and Nagy A 2011 Ann. Phys. 326 740
[24] Li Y L and Fang M F 2011 Chin. Phys. B 20 100312
[25] Man Z X, Xia Y J and An N B 2010 New. J. Phys. 12 033020
[26] Shan C J, Liu J B, Chen T, Liu T K, Huang Y X and Li H 2010 Chin. Phys. Lett. 27 100301
[27] An N B 2010 Phys. Rev. A 84 022329
[28] Altintas F and Eryigit R 2010 Phys. Lett. A 374 4283
[29] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[30] Bellomo B, Franco R Lo and Compagno G 2007 Phys. Rev. Lett. 99 160502
[31] Bellomo B, Franco R Lo and Compagno G 2008 Phys. Rev. A 77 032342
[32] Sabin C and Garcia-Alcaine G 2008 Eur. Phys. J. D 48 435
[33] McMahon D 2007 Quantum Computing Explained (New York: Wiley and Sons)
[34] Peng J S and Li G X 1996 Introduction to Modern Quantum Optics (Beijing: Science Press) (in Chinese)
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[3] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[4] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[5] Alternative non-Gaussianity measures for quantum states based on quantum fidelity
Cheng Xiang(向成), Shan-Shan Li(李珊珊), Sha-Sha Wen(文莎莎), and Shao-Hua Xiang(向少华). Chin. Phys. B, 2022, 31(3): 030306.
[6] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[7] Effects of classical random external field on the dynamics of entanglement in a four-qubit system
Edwige Carole Fosso, Fridolin Tchangnwa Nya, Lionel Tenemeza Kenfack, and Martin Tchoffo. Chin. Phys. B, 2021, 30(11): 110310.
[8] Detection of the quantum states containingat most k-1 unentangled particles
Yan Hong(宏艳), Xianfei Qi(祁先飞), Ting Gao(高亭), and Fengli Yan(闫凤利). Chin. Phys. B, 2021, 30(10): 100306.
[9] Optimized monogamy and polygamy inequalities for multipartite qubit entanglement
Jia-Bin Zhang(张嘉斌), Zhi-Xiang Jin(靳志祥), Shao-Ming Fei(费少明), and Zhi-Xi Wang(王志玺). Chin. Phys. B, 2021, 30(10): 100310.
[10] Fine-grained uncertainty relation for open quantum system
Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊). Chin. Phys. B, 2021, 30(6): 060315.
[11] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[12] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[13] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[14] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[15] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
No Suggested Reading articles found!