Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 127802    DOI: 10.1088/1674-1056/22/12/127802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Interplay between out-of-plane magnetic plasmon and lattice resonance for modified resonance lineshape and near-field enhancement in double nanoparticles array

Ding Pei (丁佩)a, Wang Jun-Qiao (王俊俏)b, He Jin-Na (何金娜)b, Fan Chun-Zhen (范春珍)b, Cai Gen-Wang (蔡根旺)b, Liang Er-Jun (梁二军)b
a Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015, China;
b School of Physical Science and Engineering and Key Laboratory of Materials Physics of Ministry of Education of China, Zhengzhou University, Zhengzhou 450052, China
Abstract  Two-dimensional double nanoparticle (DNP) arrays are demonstrated theoretically, supporting the interaction between out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the nanoparticle height or the array period due to the height-dependent magnetic resonance and the periodicity-dependent lattice resonance. The interplay between the two plasmon modes can lead to a remarkable change in resonance lineshape and an improvement on magnetic field enhancement. Simultaneous electric field and magnetic field enhancement can be obtained in the gap region between neighboring particles at two resonance frequencies as the interplay occurs, which presents “open” cavities as electromagnetic field hot spots for potential applications on detection and sensing. The results not only offer an attractive way to tune the optical responses of plasmonic nanostructure, but also provide further insight into the plasmon interactions in periodic nanostructure or metamaterials comprising multiple elements.
Keywords:  magnetic plasmon      lattice resonance      field enhancement      nanoparticles array  
Received:  21 February 2013      Revised:  19 April 2013      Accepted manuscript online: 
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  78.20.Bh (Theory, models, and numerical simulation)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974183, 11104252, 61274012, and 51072184), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20114101110003), the Aeronautical Science Foundation of China (Grant No. 2011ZF55015), the Basic and Frontier Technology Research Program of Henan Province, China (Grant Nos. 112300410264 and 122300410162), the Foundation of University Young Key Teacher from Henan Province, China (Grant No. 2012GGJS-146), the Key Program of Science and Technology of Henan Education Department, China (Grant Nos. 12A140014 and 13A140693), and the Postdoctoral Research Sponsorship of Henan Province, China (Grant No. 2011002).
Corresponding Authors:  Ding Pei     E-mail:  dingpei@zzia.edu.cn

Cite this article: 

Ding Pei (丁佩), Wang Jun-Qiao (王俊俏), He Jin-Na (何金娜), Fan Chun-Zhen (范春珍), Cai Gen-Wang (蔡根旺), Liang Er-Jun (梁二军) Interplay between out-of-plane magnetic plasmon and lattice resonance for modified resonance lineshape and near-field enhancement in double nanoparticles array 2013 Chin. Phys. B 22 127802

[1] Stewart M, Anderton C, Thompson L, Maria J, Gray S, Rogers J and Nuzzo R 2008 Chem. Rev. 108 494
[2] Atwater H A and Polman A 2010 Nat. Mater. 9 205
[3] Tong L M and Xu H X 2012 Physics 41 582 (in Chinese)
[4] Cong C, Wu D J and Liu X J 2012 Acta Phys. Sin. 61 047802 (in Chinese)
[5] Halas N J, Lal S, Chang W S, Link S and Nordlander P 2011 Chem. Rev. 111 3913
[6] Rechberger W, Hohenau A, Leitner A, Krenn J, Lamprecht B and Aussenegg F 2003 Opt. Commun. 220 137
[7] Pakizeh T, Dmitriev A, Abrishamian M S, Granpayeh N and Kall M 2008 J. Opt. Soc. Am. B 25 659
[8] Grillet N, Manchon D, Bertorelle F, Bonnet C, Broyer M, Cottancin E, Lermé J, Hillenkamp M and Pellarin M 2011 ACS Nano 5 9450
[9] Funston A M, Novo C, Davis T J and Mulvaney P 2009 Nano Lett. 9 1651
[10] Oubre C and Nordlander P 2005 J. Phys. Chem. B 109 10042
[11] Larsson E M, Hao F, Eurenius L, Olsson E, Nordlander P and Sutherland D S 2008 Small 4 1630
[12] Hao E and Schatz G 2004 J. Chem. Phys. 120 357
[13] Jain P K, Huang W Y and El-Sayed M A 2007 Nano Lett. 7 2080
[14] Pelton M, Aizpurua J and Bryant G 2008 Metal-nanoparticle Plasmonics Laser Photonics Rev. 2 136
[15] Pakizeh T, Abrishamian M, Granpayeh N, Dmitriev A and Käll M 2006 Opt. Express 14 8240
[16] Grigorenko A N, Geim A K, Gleeson H F, Zhang Y, Firsov A A, Khrushchev I Y and Petrovic J 2005 Nature 438 335
[17] Nordlander P 2013 Nat. Nanotechnol. 876-7
[18] Klein M W, Enkrich C, Wegener M and Linden S 2006 Science 313 502
[19] Vourc’h E, Joubert P Y and Cima L 2009 Prog. Electromagn. Res. 99 323
[20] Lamprecht B, Schider G, Lechner R, Ditlbacher H, Krenn J, Leitner A and Aussenegg F 2000 Phys. Rev. Lett. 84 4721
[21] Singh R, Rockstuhl C and Weili Z 2010 Appl. Phys. Lett. 97 241108
[22] Auguié B and Barnes W L 2008 Phys. Rev. Lett. 101 143902
[23] Chu Y, Schonbrun E, Yang T and Crozier K B 2008 Appl. Phys. Lett. 93 181108
[24] Giannini V, Vecchi G and Rivas J G 2010 Phys. Rev. Lett. 105 266801
[25] Bitzer A, Wallauer J, Helm H, Merbold H, Feurer T and Walther M 2009 Opt. Express 17 22108
[26] Kravets V, Schedin F and Grigorenko A 2008 Phys. Rev. Lett. 101 87403
[27] Vecchi G, Giannini V and Gomez Rivas J 2009 Phys. Rev. Lett. 102 146807
[28] Offermans P, Schaafsma M C, Rodriguez S R K, Zhang Y, Crego-Calama M, Brongersma S H and Gómez Rivas J 2011 ACS Nano 5 5151
[29] Tang C, Zhan P, Cao Z, Pan J, Chen Z and Wang Z 2011 Phys. Rev. B 83 041402
[30] Liu H, Sun X, Pei Y, Yao F and Jiang Y 2012 Opt. Lett. 36 2414
[31] Johnson P and Christy R 1972 Phys. Rev. B 6 4370
[32] Ding P, Liang E J, Hu W Q, Zhou Q, Zhang L, Yuan Y X and Xue Q Z 2009 Opt. Express 17 2198
[33] Maier S A 2011 Laser Focus World 47 63
[34] Ding P, Fan C Z, Cheng Y G, Liang E J and Xue Q Z 2012 Appl. Opt. 51 1879
[35] Henson J, DiMaria J and Paiella R 2009 J. Appl. Phys. 106 093111
[1] Quality factor enhancement of plasmonic surface lattice resonance by using asymmetric periods
Yunjie Shi(石云杰), Lei Xiong(熊磊), Yuming Dong(董玉明), Degui Sun(孙德贵), and Guangyuan Li(李光元). Chin. Phys. B, 2022, 31(1): 014217.
[2] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[3] Extra-narrowband metallic filters with an ultrathin single-layer metallic grating
Ran Wang(王然), Qi-Huang Gong(龚旗煌), Jian-Jun Chen(陈建军). Chin. Phys. B, 2020, 29(6): 064215.
[4] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
[5] Cascaded plasmonic nanorod antenna for large broadband local electric field enhancement
Dou Zhang(张豆), Zhong-Jian Yang(杨中见), Jun He(何军). Chin. Phys. B, 2019, 28(10): 107802.
[6] An electrically tunable metasurface integrated with graphene for mid-infrared light modulation
Zongpeng Wang(王宗鹏), Ya Deng(邓娅), LianFeng Sun(孙连峰). Chin. Phys. B, 2017, 26(11): 114101.
[7] Resonant magneto-optical Kerr effect induced by hybrid plasma modes in ferromagnetic nanovoids
Xia Zhang(张 霞), Lei Shi(石 磊), Jing Li(李晶), Yun-Jie Xia(夏云杰), Shi-Ming Zhou(周仕明). Chin. Phys. B, 2017, 26(11): 117801.
[8] Tunable multiple plasmon resonances and local field enhancement of nanocrescent/nanoring structure
Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Chen Dong (陈栋), Fang Yun-Tuan (方云团), Chen Ming-Yang (陈明阳). Chin. Phys. B, 2015, 24(8): 087301.
[9] Fano-like resonance characteristics of asymmetric Fe2O3@Au core/shell nanorice dimer
Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Zhang Hao-Peng (张昊鹏), Chen Jin-Ping (陈金平). Chin. Phys. B, 2014, 23(8): 087303.
[10] Influence of polarization direction, incidence angle, and geometry on near-field enhancement in two-layered gold nanowires
Wu Da-Jian(吴大建), Jiang Shu-Min(蒋书敏), and Liu Xiao-Jun(刘晓峻) . Chin. Phys. B, 2012, 21(7): 077803.
[11] Near-field properties of a shell nanocylinder pair with gain materials
Wang Qiao (王乔), Wu Shi-Fa (吴世法), Wang Xiao-Gang (王晓钢 ). Chin. Phys. B, 2012, 21(11): 117302.
[12] Magnetic plasmon mode resonance and power transmission in a nanosandwich waveguide
Fu Fei-Ya(付非亚), Zhou Wen-Jun(周文君), Liu An-Jin(刘安金), Chen Wei(陈微), Wang Yu-Fei(王宇飞), Yan Xin-Yu(晏新宇), and Zheng Wan-Hua(郑婉华) . Chin. Phys. B, 2011, 20(8): 087301.
[13] Simultaneous low extinction and high local field enhancement in Ag nanocubes
Zhou Fei(周飞), Liu Ye(刘晔), and Li Zhi-Yuan(李志远). Chin. Phys. B, 2011, 20(3): 037303.
[14] Coherent control of negative refraction based on local-field enhancement and dynamically induced chirality
Ba Nuo (巴诺), Gao Jin-Wei (高金伟), Tian Xing-Xia (田杏霞), Wu Xi (吴熙), Wu Jin-Hui (吴金辉). Chin. Phys. B, 2010, 19(7): 074208.
[15] Field emission of carbon nanotube array with normal-gate cold cathode
Dai Jian-Feng(戴剑锋), Mu Xiao-Wen(慕晓文), Qiao Xian-Wu(乔宪武), Chen Xiao-Xing(陈小婷), and Wang Jun-Hong(王军红). Chin. Phys. B, 2010, 19(5): 057201.
No Suggested Reading articles found!