Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 107302    DOI: 10.1088/1674-1056/22/10/107302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High-mobility germanium p-MOSFETs by using HCl and (NH4)2S surface passivation

Xue Bai-Qing (薛百清), Wang Sheng-Kai (王盛凯), Han Le (韩乐), Chang Hu-Dong (常虎东), Sun Bing (孙兵), Zhao Wei (赵威), Liu Hong-Gang (刘洪刚)
Microwave Device and IC Department, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  To achieve a high-quality high-κ/Ge interfaces for high hole mobility Ge p-MOSFET applications, a simple chemical cleaning and surface passivation scheme is introduced, and Ge p-MOSFETs with effective channel hole mobility up to 665 cm2/V·s are demonstrated on a Ge (111) substrate. Moreover, a physical model is proposed to explain the dipole layer formation at the metal-oxide-semiconductor (MOS) interface by analyzing the electrical characteristics of HCl-and (NH4)2S-passivated samples.
Keywords:  Ge      MOSFET      high-k dielectric      mobility  
Received:  26 March 2013      Revised:  06 May 2013      Accepted manuscript online: 
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  71.55.Eq (III-V semiconductors)  
  77.55.D-  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00605 and 2010CB327501), the National Natural Science Foundation of China (Grant No. 61106095), and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX02708-003).
Corresponding Authors:  Wang Sheng-Kai, Liu Hong-Gang     E-mail:  wangshengkai@ime.ac.cn;liuhonggang@ime.ac.cn

Cite this article: 

Xue Bai-Qing (薛百清), Wang Sheng-Kai (王盛凯), Han Le (韩乐), Chang Hu-Dong (常虎东), Sun Bing (孙兵), Zhao Wei (赵威), Liu Hong-Gang (刘洪刚) High-mobility germanium p-MOSFETs by using HCl and (NH4)2S surface passivation 2013 Chin. Phys. B 22 107302

[1] Prabhakaran K, Maeda F, Watanabe Y and Ogino T 2000 Appl. Phys. Lett. 76 2244
[2] Sun S Y, Sun Y, Liu Z, Lee D L, Peterson S and Pianetta P 2006 Appl. Phys. Lett. 88 88
[3] Frank M M, Koester S J, Copel M, Ott J A and Loesing R 2006 Appl. Phys. Lett. 89 112905
[4] Xu J P, Lai P T, Li C X, Zou X and Chan C L 2006 IEEE Electron Dev. Lett. 27 439
[5] Xue B Q, Chang H D, Sun B, Wang S K and Liu H G 2012 Chin. Phys. Lett. 29 046801
[6] Chang H D, Sun B, Zhao W, Wang W X and Liu H G 2012 Acta Phys. Sin. 61 217304 (in Chinese)
[7] Chang H D, Liu G M, Sun B, Zhao W and Liu H G 2013 Chin. Phys. Lett. 30 037303
[8] Aktag A, Yimaz E, Mogaddam N A P, Aygun G, Cantas A and Turan R 2010 Nucl. Instrum. Method B 268 3417
[9] Li C X, Leung C H, Lai T P and Xu J P 2010 Solid State Electron 54 675
[10] Zhang R, Iwasaki T, Taoka N, Takenaka M and Takagi S 2011 in VLSI 56
[11] Lee C H, Nishimura T, Tabata T, Wang S K, Nagashio K, Kita K and Toriumi A 2010 in IEDM 18.1
[12] Takagi S, Toriumi A, Iwase M and Tanago H 1994 IEEE Trans. Electron Dev. 41 2357
[13] Kita K and Toriumi A 2009 Appl. Phys. Lett. 94 132902
[14] Krisch P D, Sivasubramani P, Huang J, Young C D, Quevedo-Lopez M A, Wen H C, Alshareef H, Choi K, et al. 2008 Appl. Phys. Lett. 92 092901
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[3] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[4] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[5] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[6] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[7] Dynamic electrostatic-discharge path investigation relied on different impact energies in metal-oxide-semiconductor circuits
Tian-Tian Xie(谢田田), Jun Wang(王俊), Fei-Bo Du(杜飞波), Yang Yu(郁扬), Yan-Fei Cai(蔡燕飞), Er-Yuan Feng(冯二媛), Fei Hou(侯飞), and Zhi-Wei Liu(刘志伟). Chin. Phys. B, 2023, 32(4): 048501.
[8] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[9] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[10] Performance optimization on finite-time quantum Carnot engines and refrigerators based on spin-1/2 systems driven by a squeezed reservoir
Haoguang Liu(刘浩广), Jizhou He(何济洲), and Jianhui Wang(王建辉). Chin. Phys. B, 2023, 32(3): 030503.
[11] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[12] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[13] Ridge regression energy levels calculation of neutral ytterbium (Z = 70)
Yushu Yu(余雨姝), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(3): 033101.
[14] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[15] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
No Suggested Reading articles found!