Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 104205    DOI: 10.1088/1674-1056/22/10/104205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

An all-polarization-maintaining repetition-tunable erbium-doped passively mode-locked fiber laser

Zhao Guang-Zhen (赵光贞)a, Xiao Xiao-Sheng (肖晓晟)a, Meng Fei (孟飞)b, Mei Jia-Wei (梅佳伟)a, Yang Chang-Xi (杨昌喜)a
a State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China;
b Division of Time and Frequency Metrology, National Institute of Metrology, Beijing 100013, China
Abstract  An environmentally stable, repetition rate tunable, all-polarization-maintaining, Er-doped pulse fiber laser with a single-wall carbon nanotubes saturated absorber is demonstrated. The ring laser cavity includes a delay line enabling a tunable repetition rate to vary from 35.52 MHz to 35.64 MHz with continuous mode-locked operation. The laser output parameters confirm that the tunable mode-locked operations are stable. High environmental stability is also confirmed by the-130 dBc/Hz low phase noise, a 70-dB signal-to-noise ratio of radio frequency signals, a low amplitude fluctuation of 5.76×10-4, and a low fluctuation of repetition rate of 12 Hz. The laser shows a high degree of polarization of 93%.
Keywords:  fiber laser      modulation      tuning and mode locking      nanotubes  
Received:  30 November 2012      Revised:  23 January 2013      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  61.46.Fg (Nanotubes)  
Corresponding Authors:  Yang Chang-Xi     E-mail:  cxyang@tsinghua.edu.cn

Cite this article: 

Zhao Guang-Zhen (赵光贞), Xiao Xiao-Sheng (肖晓晟), Meng Fei (孟飞), Mei Jia-Wei (梅佳伟), Yang Chang-Xi (杨昌喜) An all-polarization-maintaining repetition-tunable erbium-doped passively mode-locked fiber laser 2013 Chin. Phys. B 22 104205

[1] Schibli T R, Minoshima K, Hong F L, Inaba H, Onae A and Matsumoto H 2004 Opt. Lett. 29 2467
[2] Washburn B R, Fox R W, Newbury N R, Nicholson J W, Feder K, Westbrook P S and Jorgensen C G 2004 Opt. Express 12 4999
[3] Hundertmark H, Kracht D, Engelbrecht M, Wandt D and Fallnich C 2004 Opt. Express 12 3178
[4] Chong A, Renninger W H and Wise F W 2008 Opt. Lett. 33 1071
[5] Okhotnikov O, Grudinin A and Pessa M 2004 New J. Phys. 6 22
[6] Nishizawa N, Seno Y, Sumimura K, Sakakibara Y, Itoga E, Kataura H and Itoh K 2008 Opt. Express 16 9429
[7] Senoo Y, Nishizawa N, Sakakibara Y, Sumimura K, Itoga E, Kataura H and Itoh K 2009 Opt. Express 17 20233
[8] Senoo Y, Nishizawa N, Sakakibara Y, Sumimura K, Itoga E, Kataura H and Itoh K 2010 Opt. Express 18 20673
[9] Ren G J, Zhang Q, Wang P and Yao J Q 2003 Acta Phys. Sin. 52 3917 (in Chinese)
[10] Sobon G, Sotor J and Abramski K M 2012 Laser Phys. Lett. 9 581
[11] Sotor J, Sobon G and Abramski K M 2012 Opt. Lett. 37 2166
[12] Ren G J, Wei Z and Yao J Q 2009 Acta Phys. Sin. 58 941 (in Chinese)
[13] Dong X L, Xiao H, Ma Y X, Zhou P and Guo S F 2012 Acta Phys. Sin. 61 064207 (in Chinese)
[14] Liu Y S, Zhang J G, Chen G F and Bai J 2010 J. Opt. 12 095204
[15] Jones D J, Nelson L E, Haus H A and Ippen E P 1997 IEEE. J. Sel. Top. Quant. 3 1076
[16] Gui L L, Yang X, Zhao G Z, Yang X, Xiao X S, Zhu J S and Yang C X 2011 Appl. Opt. 50 110
[17] Tang D Y, Zhao L M, Zhao B and Liu A Q 2005 Phys. Rev. A 72 043816
[18] Liu X M 2011 Phys. Rev. A 84 023835
[19] Sun Z P, Hasan T, Wang F Q, Rozhin A G, White I H and Ferrari A C 2010 Nano Res. 3 404
[20] Chong A, Renninger W H and Wise F 2008 Opt. Lett. 33 1071
[21] Midrio M and Wabnitz S 1996 Phys. Rev. E 54 5743
[22] Holman K W, Jones R J, Marian A, Cundiff S T and Ye J 2003 Opt. Lett. 28 851
[23] Ding E and Kutz J N 2009 J. Opt. Soc. Am. B 26 1400
[24] Blow K J, Doran N J and David W 1987 Opt. Lett. 12 202
[25] Nicholson J W and Andrejco M 2006 Opt. Express 14 8160
[26] Stumpf M C, Pekarek S, Oehler A E, Südmeyer H T, Dudley J M and Keller U 2010 Appl. Phys. B 99 401
[27] Newbury R N and Swann W C 2007 J. Opt. Soc. Am. B 24 1756
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[5] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[6] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[7] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[8] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
[9] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[10] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[11] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[12] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[13] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[14] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[15] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
No Suggested Reading articles found!