Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 016301    DOI: 10.1088/1674-1056/22/1/016301
RAPID COMMUNICATION Prev   Next  

Effect of 6H-SiC (1120) substrate on epitaxial graphene revealed by Raman scattering

Lin Jing-Jing (林菁菁), Guo Li-Wei (郭丽伟), Jia Yu-Ping (贾玉萍), Chen Lian-Lian (陈莲莲), Lu Wei (芦伟), Huang Jiao (黄郊), Chen Xiao-Long (陈小龙)
Research & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  A nonpolar SiC(110) substrate has been used to fabricate epitaxial graphene (EG). Two EGs with layer numbers of 8-10 (referred to as MLG) and 2-3 (referred to as FLG) were used as representative to study the substrate effect on EG through temperature dependent Raman scattering. It is found that Raman lineshifts of G and 2D peaks of the MLG with temperature are consistent with that of a free graphene predicted by theory calculation, indicating that the substrate influence on the MLG is undetectable. While Raman G peak lineshifts of the FLG to that of the free graphene are obvious, however, its lineshift rate (-0.016 cm-1/K) is almost one third of that (-0.043 cm-1/K) of a EG on 6H-SiC (0001) in the temperature range from 300 K to 400 K, indicating a weak substrate effect from SiC (110) on the FLG. This renders the FLG a high mobility around 1812 cm2- ·V-1·s-1 at room temperature even with a very high carrier concentration about 2.95× 1013 cm-2 (p-type). These suggest SiC (110) is more suitable for fabricating EG with high performance.
Keywords:  epitaxial grapheme      6H-SiC (1120)      temperature dependent Raman scattering  
Received:  05 July 2012      Revised:  06 September 2012      Accepted manuscript online: 
PACS:  63.22.Rc (Phonons in graphene)  
  63.20.Ry (Anharmonic lattice modes)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB932700), the Knowledge Innovation Project of Chinese Academy of Science (Grant No. KJCX2-YW-W22), and the National Natural Science Foundation of China (Grant Nos. 51072223 and 50972162).
Corresponding Authors:  Guo Li-Wei     E-mail:  lwguo@iphy.ac.cn

Cite this article: 

Lin Jing-Jing (林菁菁), Guo Li-Wei (郭丽伟), Jia Yu-Ping (贾玉萍), Chen Lian-Lian (陈莲莲), Lu Wei (芦伟), Huang Jiao (黄郊), Chen Xiao-Long (陈小龙) Effect of 6H-SiC (1120) substrate on epitaxial graphene revealed by Raman scattering 2013 Chin. Phys. B 22 016301

[1] Robinson J, Weng X, Trumbull K, Cavalero R, Wetherington M, Frantz E, LaBella M, Hughes Z, Fanton M and Snyder D 2009 ACS Nano 4 153
[2] Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A and Röhrl J 2009 Nature Mater. 8 203
[3] Virojanadara C, SyvAjarvi M, Yakimova R, Johansson L, Zakharov A and Balasubramanian T 2008 Phys. Rev. B 78 245403
[4] Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A and Avouris P 2010 Science 327 662
[5] Lin Y M, Dimitrakopoulos C, Farmer D B, Han S J, Wu Y Q, Zhu W J, Gaskill D K, Tedesco J L, Myers-Ward R L, Eddy C R, Grill A and Avouris P 2010 Appl. Phys. Lett. 97 112107
[6] Jernigan G, VanMil B, Tedesco J, Tischler J, Glaser E, Davidson III A, Campbell P and Gaskill D 2009 Nano Lett. 9 2605
[7] Robinson J, Wetherington M, Tedesco J, Campbell P, Weng X, Stitt J, Fanton M, Frantz E, Snyder D and VanMil B 2009 Nano Lett. 9 2873
[8] Wang D C, Zhang Yu M, Zhang Y M, Lei T M, Guo H, Wang Y H, Tang X Y and Wang H 2012 Chin. Phys. B 21 038102
[9] Hao X, Chen Y F, Li P J, Wang Z C, Liu J B, He J R, Fan R, Sun J R, Zhang W L and Li Y R 2012 Chin. Phys. B 21 046801
[10] Bolotin K I, Sikes K, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H 2008 Sol. St. Comm. 146 351
[11] Bolotin K, Sikes K, Hone J, Stormer H and Kim P 2008 Phys. Rev. Lett. 101 96802
[12] Chen W, Chen S, Ni Z, Huang H, Qi D, Gao X, Shen Z and Wee A 2010 Jpn. J. Appl. Phys 49 3
[13] Camara N, Jouault B, Caboni A, Tiberj A, Godignon P and Camassel J 2011 Nanosci. Nanotech. Lett. 3 49
[14] Lee D, Riedl C, Krauss B, Von Klitzing K, Starke U and Smet J 2008 Nano Lett. 8 4320
[15] Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C and Wirtz L 2007 Nano Lett. 7 238
[16] Ferrari A, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K and Roth S 2006 Phys. Rev. Lett. 97 187401
[17] Das A, Pisana S, Chakraborty B, Piscanec S, Saha S, Waghmare U, Novoselov K, Krishnamurthy H, Geim A and Ferrari A 2008 Nature Nanotech. 3 210
[18] Yang R, Shi Z W, Zhang L C, Shi D X and Zhang G Y 2011 Nano Lett. 11 4083
[19] Wang D C, Zhang Y M, Zhang Y M, Lei T M, Guo H, Wang Y H, Tang X Y and Wang H 2011 Chin. Phys. B 20 128101
[20] Lin J, Guo L, Huang Q, Jia Y, Li K, Lai X and Chen X 2011 Phys. Rev. B 83 125430
[21] Bonini N, Rao R, Rao A M, Marzari N and Menéndez J 2008 Phys. Stat. Sol. B 245 2149
[22] Ferralis N, Maboudian R and Carraro C 2011 Phys. Rev. B 12 081410(R)
[23] Bonini N, Lazzeri M, Marzari N and Mauri F 2007 Phys. Rev. Lett. 99 176802
[24] Ferralis N, Maboudian R and Carraro C 2008 Phys. Rev. Lett. 101 156801
[25] Ni Z, Chen W, Fan X, Kuo J, Yu T, Wee A and Shen Z 2008 Phys. Rev. B 77 115416
[26] Yoon D, Son Y W and Cheong H 2011 Nano Lett. 8 3227
[27] Stockmeier M, Muller R, Sakwe S, Wellmann P and Magerl A 2009 J. Appl. Phys. 105 033511
[28] Tsang D, Marsden B, Fok S and Hall G 2005 Carbon 43 2902
[29] Huang M, Yan H, Chen C, Song D, Heinz T F and Hone J 2009 Proc. Nat. Acad. Sci. USA 106 7304
[30] Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P and Shen Z X 2008 ACS Nano 2 2301
[31] Frank O, Bousa M, Riaz I, Jalil R, Novoselov K S, Tsoukleri G, Parthenios J, Kavan L, Papagelis K and Galiotis C 2012 Nano Lett. 2 687
[32] Ding F, Ji H, Chen Y, Herklotz A, Dörr K, Mei Y, Rastelli A and Schmidt O G 2010 Nano Lett. 9 3453
[33] Gong L, Kinloch I A, Young R J, Riaz I, Jalil R and Novoselov K S 2010 Adv. Mater. 22 2694
[34] Yu T, Ni Z, Du C, You Y, Wang Y and Shen Z 2008 J. Phys. Chem. C. 112 12602
[35] Young R J, Gong L, Kinloch I, Riaz I, Jalil R and Novoselov K 2011 ACS Nano 4 3079
[36] Tsoukleri G, Parthenios J, Papagelis K, Jalil R, Ferrari A C, Geim A K, Novoselov K S and Galiotis C 2009 Small 5 2397
[1] Reduction of interfacial thermal resistance of overlapped graphene by bonding carbon chains
Yuwen Huang(黄钰文), Wentao Feng(冯文韬), Xiaoxiang Yu(余晓翔), Chengcheng Deng(邓程程), and Nuo Yang(杨诺). Chin. Phys. B, 2020, 29(12): 126303.
[2] Multilayer graphene refractive index tuning by optical power
Lijun Li(李丽君), Yilin Liu(刘仪琳), Yinming Liu(刘荫明), Lin Xu(徐琳), Fei Yu(于飞), Tianzong Xu(徐天纵), Zhihui Shi(石志辉), Weikang Jia(贾伟康). Chin. Phys. B, 2018, 27(12): 126304.
[3] Thermal transport in semiconductor nanostructures, graphene, and related two-dimensional materials
Alexandr I. Cocemasov, Calina I. Isacova, Denis L. Nika. Chin. Phys. B, 2018, 27(5): 056301.
[4] Ultra-broadband polarization splitter based on graphene layer-filled dual-core photonic crystal fiber
Hui Zou(邹辉), Hui Xiong(熊慧), Yun-Shan Zhang(张云山), Yong Ma(马勇), Jia-Jin Zheng(郑加金). Chin. Phys. B, 2017, 26(12): 124216.
[5] Thermal transport in twisted few-layer graphene
Min-Hua Wang(王敏华), Yue-E Xie(谢月娥), Yuan-Ping Chen(陈元平). Chin. Phys. B, 2017, 26(11): 116503.
[6] Different angle-resolved polarization configurations of Raman spectroscopy: A case on the basal and edge plane of two-dimensional materials
Xue-Lu Liu(刘雪璐), Xin Zhang(张昕), Miao-Ling Lin(林妙玲), Ping-Heng Tan(谭平恒). Chin. Phys. B, 2017, 26(6): 067802.
[7] Lattice vibration and thermodynamical properties of a single-layergraphene in the presence of vacancy defects
Sha Li(黎莎), Zeng-Tao Lv(吕增涛). Chin. Phys. B, 2017, 26(3): 036303.
[8] Theoretical investigation of structural and optical properties of semi-fluorinated bilayer graphene
Xiao-Jiao San(伞晓娇), Bai Han(韩柏), Jing-Geng Zhao(赵景庚). Chin. Phys. B, 2016, 25(3): 037305.
[9] Thermal transport properties of defective graphene: A molecular dynamics investigation
Yang Yu-Lin (杨宇霖), Lu Yu (卢宇). Chin. Phys. B, 2014, 23(10): 106501.
No Suggested Reading articles found!