|
|
Effect of 6H-SiC (1120) substrate on epitaxial graphene revealed by Raman scattering |
Lin Jing-Jing (林菁菁), Guo Li-Wei (郭丽伟), Jia Yu-Ping (贾玉萍), Chen Lian-Lian (陈莲莲), Lu Wei (芦伟), Huang Jiao (黄郊), Chen Xiao-Long (陈小龙) |
Research & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract A nonpolar SiC(110) substrate has been used to fabricate epitaxial graphene (EG). Two EGs with layer numbers of 8-10 (referred to as MLG) and 2-3 (referred to as FLG) were used as representative to study the substrate effect on EG through temperature dependent Raman scattering. It is found that Raman lineshifts of G and 2D peaks of the MLG with temperature are consistent with that of a free graphene predicted by theory calculation, indicating that the substrate influence on the MLG is undetectable. While Raman G peak lineshifts of the FLG to that of the free graphene are obvious, however, its lineshift rate (-0.016 cm-1/K) is almost one third of that (-0.043 cm-1/K) of a EG on 6H-SiC (0001) in the temperature range from 300 K to 400 K, indicating a weak substrate effect from SiC (110) on the FLG. This renders the FLG a high mobility around 1812 cm2- ·V-1·s-1 at room temperature even with a very high carrier concentration about 2.95× 1013 cm-2 (p-type). These suggest SiC (110) is more suitable for fabricating EG with high performance.
|
Received: 05 July 2012
Revised: 06 September 2012
Accepted manuscript online:
|
PACS:
|
63.22.Rc
|
(Phonons in graphene)
|
|
63.20.Ry
|
(Anharmonic lattice modes)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB932700), the Knowledge Innovation Project of Chinese Academy of Science (Grant No. KJCX2-YW-W22), and the National Natural Science Foundation of China (Grant Nos. 51072223 and 50972162). |
Corresponding Authors:
Guo Li-Wei
E-mail: lwguo@iphy.ac.cn
|
Cite this article:
Lin Jing-Jing (林菁菁), Guo Li-Wei (郭丽伟), Jia Yu-Ping (贾玉萍), Chen Lian-Lian (陈莲莲), Lu Wei (芦伟), Huang Jiao (黄郊), Chen Xiao-Long (陈小龙) Effect of 6H-SiC (1120) substrate on epitaxial graphene revealed by Raman scattering 2013 Chin. Phys. B 22 016301
|
[1] |
Robinson J, Weng X, Trumbull K, Cavalero R, Wetherington M, Frantz E, LaBella M, Hughes Z, Fanton M and Snyder D 2009 ACS Nano 4 153
|
[2] |
Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A and Röhrl J 2009 Nature Mater. 8 203
|
[3] |
Virojanadara C, SyvAjarvi M, Yakimova R, Johansson L, Zakharov A and Balasubramanian T 2008 Phys. Rev. B 78 245403
|
[4] |
Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A and Avouris P 2010 Science 327 662
|
[5] |
Lin Y M, Dimitrakopoulos C, Farmer D B, Han S J, Wu Y Q, Zhu W J, Gaskill D K, Tedesco J L, Myers-Ward R L, Eddy C R, Grill A and Avouris P 2010 Appl. Phys. Lett. 97 112107
|
[6] |
Jernigan G, VanMil B, Tedesco J, Tischler J, Glaser E, Davidson III A, Campbell P and Gaskill D 2009 Nano Lett. 9 2605
|
[7] |
Robinson J, Wetherington M, Tedesco J, Campbell P, Weng X, Stitt J, Fanton M, Frantz E, Snyder D and VanMil B 2009 Nano Lett. 9 2873
|
[8] |
Wang D C, Zhang Yu M, Zhang Y M, Lei T M, Guo H, Wang Y H, Tang X Y and Wang H 2012 Chin. Phys. B 21 038102
|
[9] |
Hao X, Chen Y F, Li P J, Wang Z C, Liu J B, He J R, Fan R, Sun J R, Zhang W L and Li Y R 2012 Chin. Phys. B 21 046801
|
[10] |
Bolotin K I, Sikes K, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H 2008 Sol. St. Comm. 146 351
|
[11] |
Bolotin K, Sikes K, Hone J, Stormer H and Kim P 2008 Phys. Rev. Lett. 101 96802
|
[12] |
Chen W, Chen S, Ni Z, Huang H, Qi D, Gao X, Shen Z and Wee A 2010 Jpn. J. Appl. Phys 49 3
|
[13] |
Camara N, Jouault B, Caboni A, Tiberj A, Godignon P and Camassel J 2011 Nanosci. Nanotech. Lett. 3 49
|
[14] |
Lee D, Riedl C, Krauss B, Von Klitzing K, Starke U and Smet J 2008 Nano Lett. 8 4320
|
[15] |
Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C and Wirtz L 2007 Nano Lett. 7 238
|
[16] |
Ferrari A, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K and Roth S 2006 Phys. Rev. Lett. 97 187401
|
[17] |
Das A, Pisana S, Chakraborty B, Piscanec S, Saha S, Waghmare U, Novoselov K, Krishnamurthy H, Geim A and Ferrari A 2008 Nature Nanotech. 3 210
|
[18] |
Yang R, Shi Z W, Zhang L C, Shi D X and Zhang G Y 2011 Nano Lett. 11 4083
|
[19] |
Wang D C, Zhang Y M, Zhang Y M, Lei T M, Guo H, Wang Y H, Tang X Y and Wang H 2011 Chin. Phys. B 20 128101
|
[20] |
Lin J, Guo L, Huang Q, Jia Y, Li K, Lai X and Chen X 2011 Phys. Rev. B 83 125430
|
[21] |
Bonini N, Rao R, Rao A M, Marzari N and Menéndez J 2008 Phys. Stat. Sol. B 245 2149
|
[22] |
Ferralis N, Maboudian R and Carraro C 2011 Phys. Rev. B 12 081410(R)
|
[23] |
Bonini N, Lazzeri M, Marzari N and Mauri F 2007 Phys. Rev. Lett. 99 176802
|
[24] |
Ferralis N, Maboudian R and Carraro C 2008 Phys. Rev. Lett. 101 156801
|
[25] |
Ni Z, Chen W, Fan X, Kuo J, Yu T, Wee A and Shen Z 2008 Phys. Rev. B 77 115416
|
[26] |
Yoon D, Son Y W and Cheong H 2011 Nano Lett. 8 3227
|
[27] |
Stockmeier M, Muller R, Sakwe S, Wellmann P and Magerl A 2009 J. Appl. Phys. 105 033511
|
[28] |
Tsang D, Marsden B, Fok S and Hall G 2005 Carbon 43 2902
|
[29] |
Huang M, Yan H, Chen C, Song D, Heinz T F and Hone J 2009 Proc. Nat. Acad. Sci. USA 106 7304
|
[30] |
Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P and Shen Z X 2008 ACS Nano 2 2301
|
[31] |
Frank O, Bousa M, Riaz I, Jalil R, Novoselov K S, Tsoukleri G, Parthenios J, Kavan L, Papagelis K and Galiotis C 2012 Nano Lett. 2 687
|
[32] |
Ding F, Ji H, Chen Y, Herklotz A, Dörr K, Mei Y, Rastelli A and Schmidt O G 2010 Nano Lett. 9 3453
|
[33] |
Gong L, Kinloch I A, Young R J, Riaz I, Jalil R and Novoselov K S 2010 Adv. Mater. 22 2694
|
[34] |
Yu T, Ni Z, Du C, You Y, Wang Y and Shen Z 2008 J. Phys. Chem. C. 112 12602
|
[35] |
Young R J, Gong L, Kinloch I, Riaz I, Jalil R and Novoselov K 2011 ACS Nano 4 3079
|
[36] |
Tsoukleri G, Parthenios J, Papagelis K, Jalil R, Ferrari A C, Geim A K, Novoselov K S and Galiotis C 2009 Small 5 2397
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|