Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 086402    DOI: 10.1088/1674-1056/21/8/086402
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Liquid to glass transition of tetrahydrofuran and 2-methyltetrahydrofuran

Tan Rong-Ri (谈荣日)a b c, Shen Xin (沈鑫)a c, Hu Lin (胡林)b, Zhang Feng-Shou (张丰收 )a c d
a The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China;
b Guizhou Key Laboratory for Photoelectric and Application, College of Science, Guizhou University, Guiyang 550025, China;
c Beijing Radiation Center, Beijing 100875, China;
d Center of Theoretical Nuclear Physics, National Laboratory of the Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China
Abstract  Both tetrahydrofuran (THF) and 2-methyltetrahydrofuran (MTHF) are studied systematically at desired temperatures using molecular dynamics simulations. The results show that the calculated densities are well consistent with experiment. Their glass transition temperatures are obtained: 115 K ~130 K for THF and 131 K ~142 K for MTHF. The calculated results from the dipolar orientational time correlation functions indicate that the “long time” behavior is often associated with a glass transition. From the radial and spatial distributions, we also find that the methyl has a direct impact on the structural symmetry of molecules, which leads to the differences of physical properties between THF and MTHF.
Keywords:  tetrahydrofuran and 2-methyltetrahydrofuran      glass transition      molecular dynamics simulations  
Received:  08 March 2012      Revised:  26 May 2012      Accepted manuscript online: 
PACS:  64.70.P- (Glass transitions of specific systems)  
  65.20.Jk (Studies of thermodynamic properties of specific liquids)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11025524 and 11161130520) and the National Basic Research Program of China (Grant No. 2010CB832903).
Corresponding Authors:  Zhang Feng-Shou     E-mail:  fszhang@bnu.edu.cn

Cite this article: 

Tan Rong-Ri (谈荣日), Shen Xin (沈鑫), Hu Lin (胡林), Zhang Feng-Shou (张丰收 ) Liquid to glass transition of tetrahydrofuran and 2-methyltetrahydrofuran 2012 Chin. Phys. B 21 086402

[1] Florusse L J, Peters C J, Schoonman J, Hester K C, Koh C A, Dec S F, Marsh K N and Sloan E D 2004 Science 306 469
[2] Lee H, Lee J W, Kin D Y, Park J, Seo Y T, Zeng H, Moudrakovske I L, Ratcliffe C I and Ripmeester J A 2005 Nature 434 743
[3] Conrad H, Lehmkühler F, Sternemann C, Sakko A, Paschek D, Simonelli L, Huotari S, Feroughi O, Tolan M and Hämäläinen K 2009 Phys. Rev. Lett. 103 218301
[4] Lee J W, Lu H L, Moudrakovski I L, Ratcliffe C I and Ripmeester J A 2010 J. Phys. Chem. B 114 13393
[5] Schramm S, Blochosicz T, Gouirand E, Wipf R, Stühn B and Chushkin Y 2010 J. Chem. Phys. 132 224505
[6] Mizukami M, Fujimori H and Oguni M 1997 Prog. Theor. Phys. Suppl. 126 79
[7] Qi F, EI Goresy T, Böhmer R, Döss A, Diezemann G, Hinze G, Sillescu H, Blochowicz T, Gainaru C, Rössler E and Zimmermann H 2003 J. Chem. Phys. 118 7431
[8] Wendt H and Richert R 2000 Phys. Rev. E 61 1722
[9] Aycock D F 2007 Org. Process Res. Dev. 11 156
[10] Simeó Y, Sinisterra J V and Alcántara A R 2009 Green Chem. 11 855
[11] Shanmuganathan S, Natalia D, van den Wittenboer A, Kohlmann C, Grerner L and de María P D 2010 Green Chem. 12 2240
[12] Bedard-Hearn M J, Larsen R E and Schwartz B J 2003 J. Phys. Chem. B 107 14464
[13] Bragg A E, Glover W J and Schwartz B J 2010 Phys. Rev. Lett. 104 233005
[14] Zhang F S and Lynden-Bell R M 2003 J. Chem. Phys. 119 6119
[15] Chandrasekhar J and Jorgensen W L 1982 J. Chem. Phys. 77 5073
[16] Briggs J M, Matsui T and Jorgensen W L 1990 J. Comput. Chem. 11 958
[17] Faller R, Schmitz H, Blermann O and Müller-Plathe F 1999 J. Comput. Chem. 20 1009
[18] Girard S and Müller-Plathe F 2003 Mol. Phys. 101 779
[19] Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09 Revision A.1 (Wallingford CT: Gaussian, Inc.)
[20] Berendsen H J C, Grigera R J and Straatsma T P 1987 J. Phys. Chem. 91 6269
[21] Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press)
[22] Todorov I T and Smith W 2010 DL_POLY-4.02 (STFC Daresbury Laboratory, Warrington WA44AD, Cheshire, UK)
[23] Miyamoto S and Kollman P A 1992 J. Comput. Chem. 13 952
[24] Hou Z Y, Liu R S, Tian Z A and Wang J G 2011 Chin. Phys. B 20 066102
[25] Carvajal C, Tölle K J, Smid J and Szwarc M 1965 J. Am. Chem. Soc. 87 5548
[26] Vallés C, Pérez E, Mainar A M, Santafé J and Domínguez M 2006 J. Chem. Eng. Data 51 1105
[27] Ediger M D, Angell C A and Nagel S R 1996 J. Phys. Chem. 100 13200
[28] Debenedetti P G and Stillinger F H 2001 Nature 410 259
[29] Liu J, Wang S Y, Zhang C P, Xin L J, Wnag D and Sun M H 2007 Chin. Phys. Lett. 24 2025
[30] Habasaki J and Ngai K L 2008 Anal. Sci. 24 1321
[31] Choudhury N and Pettitt B M 2005 J. Phys. Chem. B 109 6422
[32] Pal S, Balasubramanian S and Bagch B 2002 J. Chem. Phys. 117 2852
[33] Williams G 1972 Chem. Rev. 72 55
[34] Liu C S, Liang Y F, Zhu Z G and Li G X 2005 Chin. Phys. 14 785
[35] Li L, Shao J L, Duan S Q and Liang J Q 2011 Chin. Phys. B 20 046402
[1] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[2] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[3] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[4] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[5] Identification of key residues in protein functional movements by using molecular dynamics simulations combined with a perturbation-response scanning method
Jun-Bao Ma(马君宝), Wei-Bu Wang(王韦卜), and Ji-Guo Su(苏计国). Chin. Phys. B, 2021, 30(10): 108701.
[6] High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2021, 30(1): 018101.
[7] Thermodynamic and structural properties of polystyrene/C60 composites: A molecular dynamics study
Junsheng Yang(杨俊升), Ziliang Zhu(朱子亮), Duohui Huang(黄多辉), Qilong Cao(曹启龙). Chin. Phys. B, 2020, 29(2): 023104.
[8] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[9] Study of glass transition kinetics of As2S3 and As2Se3 by ultrafast differential scanning calorimetry
Fan Zhang(张凡), Yimin Chen(陈益敏), Rongping Wang(王荣平), Xiang Shen(沈祥), Junqiang Wang(王军强), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2019, 28(4): 047802.
[10] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[11] Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures
Haifei Zhan(占海飞), Yuantong Gu(顾元通). Chin. Phys. B, 2018, 27(3): 038103.
[12] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏). Chin. Phys. B, 2018, 27(2): 026801.
[13] Numerical simulations of dense granular flow in a two-dimensional channel:The role of exit position
Tingwei Wang(王廷伟), Xin Li(李鑫), Qianqian Wu(武倩倩), Tengfei Jiao(矫滕菲), Xingyi Liu(刘行易), Min Sun(孙敏), Fenglan Hu(胡凤兰), Decai Huang(黄德财). Chin. Phys. B, 2018, 27(12): 124704.
[14] Ethylene glycol solution-induced DNA conformational transitions
Nan Zhang(张楠), Ming-Ru Li(李明儒), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(11): 113102.
[15] Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media
Ping Guo(郭平), Yi-Kun Pan(潘意坤), Long-Long Li(李龙龙), Bin Tang(唐斌). Chin. Phys. B, 2017, 26(7): 073101.
No Suggested Reading articles found!