Does the eigenratio λ2/λN represent the synchronizability of a complex network?
Duan Zhi-Sheng (段志生)a, Chen Guan-Rong (陈关荣)b
a State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871, China; b Department of Electronic Engineering, City University of Hong Kong, Hong Kong, SAR, China
Abstract In the study of complex networks, it is commonly believed that the eigenratio λ2/λN of the Laplacian matrix of a network represents the network synchronizability, especially for symmetric networks. This paper gives two counterexamples to show that this is not true for the case where the network has a disconnected synchronized region. Consequently, a simple answer is presented to the question of when the eigenratio λ2/λN does represent the network synchronizability.
Duan Zhi-Sheng (段志生), Chen Guan-Rong (陈关荣) Does the eigenratio λ2/λN represent the synchronizability of a complex network? 2012 Chin. Phys. B 21 080506
[1]
Barahona M and Pecora L M 2002 Phys. Rev. Lett. 89 054101
[2]
Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[3]
Kocarev L and Amato P 2005 Chaos 15 024101
[4]
Li C P and Xu C X 2009 Chaos 19 013106
[5]
Motter A E, Zhou C S and Kurths J 2005 Europhys. Lett. 69 334
[6]
Sorrentino F, di Bernardo M, Garofalo F and Chen G R 2007 Phys. Rev. E 75 046103
[7]
Wang X G, Guan S G, Lai Y C, Li B W and Lai C H 2009 Europhys. Lett. 88 28001
[8]
Zhou C S and Kurths J 2006 Phys. Rev. Lett. 96 164102
[9]
Zhang G, Zhang W and Liu Z R 2010 Chin. Phys. Lett. 27 030504
[10]
Jin X Z and Yang G H 2010 Chin. Phys. B 19 080508
[11]
Zheng H Q and Jing Y W 2010 Chin. Phys. B 20 060504
[12]
Li H Q, Liao X F and Huang H Y 2011 Acta Phys. Sin. 60 020512 (in Chinese)
[13]
Duan Z S, Chen G R and Huang L 2008 Phys. Lett. A 372 3741
[14]
Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
[15]
Duan Z S, Chen G R and Huang L 2009 IEEE Trans. Auto. Control 54 845
[16]
Liu C, Duan Z S, Chen G R and Huang L Physica A 386 531
[17]
Belykh I V, Lange E and Hasler M 2005 Phys. Rev. Lett. 94 188101
[18]
Zhan C J, Chen G R and Yeung L F 2010 Physica A 389 1779
[19]
Zhao M, Wang B H, Yan G, Yang H J and Bai W J 2006 Physica A 371 773
[20]
Wang S J, Wu Z X, Dong H R and Chen G R 2011 Chin. Phys. B 20 048903
[21]
Comellas F and Gago S 2007 J. Phys. A: Math. Theor. 40 4483
[22]
Duan Z S, Liu C and Chen G R 2008 Physica D 237 1006
[23]
Duan Z S, Wang W X, Liu C and Chen G R 2009 Chin. Phys. B 18 3122
[24]
Kim D H and Motter A E 2007 Phys. Rev. Lett. 98 248701
[25]
McGraw P N and Menzinger M 2007 Phys. Rev. E 75 027104
[26]
Motter A E 2007 New. J. Phys. 9 182
[27]
Chen G R and Duan Z S 2008 Chaos 18 037102
[28]
Wang J Z, Duan Z S and Huang L 2006 Phys. Lett. A 351 143
[29]
Duan Z S, Chen G R and Huang L 2007 Phys. Rev. E 76 056103
[30]
Li Z K, Duan Z S, Chen G R and Huang L 2010 IEEE Trans. Circ. Syst. I 57 213
Characteristics of vapor based on complex networks in China Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.