Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 080506    DOI: 10.1088/1674-1056/21/8/080506
GENERAL Prev   Next  

Does the eigenratio λ2N represent the synchronizability of a complex network?

Duan Zhi-Sheng (段志生)a, Chen Guan-Rong (陈关荣)b
a State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871, China;
b Department of Electronic Engineering, City University of Hong Kong, Hong Kong, SAR, China
Abstract  In the study of complex networks, it is commonly believed that the eigenratio λ2N of the Laplacian matrix of a network represents the network synchronizability, especially for symmetric networks. This paper gives two counterexamples to show that this is not true for the case where the network has a disconnected synchronized region. Consequently, a simple answer is presented to the question of when the eigenratio λ2N does represent the network synchronizability.
Keywords:  synchronizability      synchronized region      Laplacian eigenratio      complex network  
Received:  02 October 2011      Revised:  02 November 2011      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  02.10.Ox (Combinatorics; graph theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60974078 and 10832006).
Corresponding Authors:  Duan Zhi-Sheng, Chen Guan-Rong     E-mail:  duanzs@pku.edu.cn; eegchen@cityu.edu.hk

Cite this article: 

Duan Zhi-Sheng (段志生), Chen Guan-Rong (陈关荣) Does the eigenratio λ2N represent the synchronizability of a complex network? 2012 Chin. Phys. B 21 080506

[1] Barahona M and Pecora L M 2002 Phys. Rev. Lett. 89 054101
[2] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[3] Kocarev L and Amato P 2005 Chaos 15 024101
[4] Li C P and Xu C X 2009 Chaos 19 013106
[5] Motter A E, Zhou C S and Kurths J 2005 Europhys. Lett. 69 334
[6] Sorrentino F, di Bernardo M, Garofalo F and Chen G R 2007 Phys. Rev. E 75 046103
[7] Wang X G, Guan S G, Lai Y C, Li B W and Lai C H 2009 Europhys. Lett. 88 28001
[8] Zhou C S and Kurths J 2006 Phys. Rev. Lett. 96 164102
[9] Zhang G, Zhang W and Liu Z R 2010 Chin. Phys. Lett. 27 030504
[10] Jin X Z and Yang G H 2010 Chin. Phys. B 19 080508
[11] Zheng H Q and Jing Y W 2010 Chin. Phys. B 20 060504
[12] Li H Q, Liao X F and Huang H Y 2011 Acta Phys. Sin. 60 020512 (in Chinese)
[13] Duan Z S, Chen G R and Huang L 2008 Phys. Lett. A 372 3741
[14] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
[15] Duan Z S, Chen G R and Huang L 2009 IEEE Trans. Auto. Control 54 845
[16] Liu C, Duan Z S, Chen G R and Huang L Physica A 386 531
[17] Belykh I V, Lange E and Hasler M 2005 Phys. Rev. Lett. 94 188101
[18] Zhan C J, Chen G R and Yeung L F 2010 Physica A 389 1779
[19] Zhao M, Wang B H, Yan G, Yang H J and Bai W J 2006 Physica A 371 773
[20] Wang S J, Wu Z X, Dong H R and Chen G R 2011 Chin. Phys. B 20 048903
[21] Comellas F and Gago S 2007 J. Phys. A: Math. Theor. 40 4483
[22] Duan Z S, Liu C and Chen G R 2008 Physica D 237 1006
[23] Duan Z S, Wang W X, Liu C and Chen G R 2009 Chin. Phys. B 18 3122
[24] Kim D H and Motter A E 2007 Phys. Rev. Lett. 98 248701
[25] McGraw P N and Menzinger M 2007 Phys. Rev. E 75 027104
[26] Motter A E 2007 New. J. Phys. 9 182
[27] Chen G R and Duan Z S 2008 Chaos 18 037102
[28] Wang J Z, Duan Z S and Huang L 2006 Phys. Lett. A 351 143
[29] Duan Z S, Chen G R and Huang L 2007 Phys. Rev. E 76 056103
[30] Li Z K, Duan Z S, Chen G R and Huang L 2010 IEEE Trans. Circ. Syst. I 57 213
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[4] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[5] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[6] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[7] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[10] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[11] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[12] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[13] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[14] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[15] Manufacturing enterprise collaboration network: An empirical research and evolutionary model
Ji-Wei Hu(胡辑伟), Song Gao(高松), Jun-Wei Yan(严俊伟), Ping Lou(娄平), Yong Yin(尹勇). Chin. Phys. B, 2020, 29(8): 088901.
No Suggested Reading articles found!