Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 080503    DOI: 10.1088/1674-1056/21/8/080503
GENERAL Prev   Next  

Modeling and dynamics analysis of the fractional-order Buck–Boost converter in continuous conduction mode

Yang Ning-Ning (杨宁宁)a b, Liu Chong-Xin (刘崇新)a b, Wu Chao-Jun (吴朝俊 )a b
a State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China;
b School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  In this paper, the fractional-order mathematical model and the fractional-order state-space averaging model of the Buck-Boost converter in continuous conduction mode (CCM) are established based on the fractional calculus and the Adomian decomposition method. Some dynamical properties of the current-mode controlled fractional-order Buck-Boost converter are analysed. The simulation is accomplished by using SIMULINK. Numerical simulations are presented to verify the analytical results. And we find that bifurcation points will be moved backward as α and β vary. At the same time, the simulation results show that the converter goes through different routes to chaos.
Keywords:  fractional-order Buck-Boost converter      modeling      bifurcation      numerical simulation  
Received:  05 December 2011      Revised:  27 February 2012      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  84.30.Jc (Power electronics; power supply circuits)  
  45.10.Hj (Perturbation and fractional calculus methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51177117) and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20100201110023).
Corresponding Authors:  Yang Ning-Ning     E-mail:  ningning.yang@stu.xjtu.edu.cn

Cite this article: 

Yang Ning-Ning (杨宁宁), Liu Chong-Xin (刘崇新), Wu Chao-Jun (吴朝俊 ) Modeling and dynamics analysis of the fractional-order Buck–Boost converter in continuous conduction mode 2012 Chin. Phys. B 21 080503

[1] Nigmatullin R R, Arbuzov A A, Salehli F, Giz A, Bayrak I and Catalgil G L 2007 Physica B 388 418
[2] Westerlund S 1994 IEEE Transactions on Dielectrics and Electrical Insulation 1 826
[3] Wu C J, Zhang Y B and Yang N N 2011 Chin. Phys. B 20 060505
[4] Westerlund S 2002 Dead Matter Has Memory! (Kalmar, Sweden: Causal Consulting) Chap. 7
[5] Podlubny I 1999 Fractional Differential Equations (San Diego: Academic Press) Chap. 2
[6] Nakagava M and Sorimachi K 1992 IEICE Trans Fundam E75-A 1814
[7] Jonscher A K 1983 Dielectric Relaxation in Solids (London: Chelsea Dielectric Press) Chap. 3
[8] Petras I 2008 Chaos, Solitons and Fractals 38 140
[9] Cisse Haba T, Ablart G, Camps T and Olivie F 2005 Chaos, Solitons and Fractals 24 479
[10] Cisse Haba T, Loum G L and Ablart G 2007 Chaos, Solitons and Fractals 33 364
[11] Cisse Haba T, Loum G L, Zoueu J T and Ablart G 2008 J. Appl. Sci. 8 59
[12] Jesus I S and Tenreiro M J A 2009 Nonlinear Dyn. 56 45
[13] Wang F Q and Ma X K 2011 Acta Phys. Sin. 60 070506 (in Chinese)
[14] Tenreiro M J A 1997 Journal Systems Analysis Modelling Simulation 27 107
[15] Torvik P J and Bagley R L 1984 Trans. ASME 51 294
[16] Zhang W P 2005 The Modeling and Control of the Switching Power Supply (Beijing: China Electric Power Press) Chap. 1 (in Chinese)
[17] Zhang Z S and Cai X S 2006 The Principle and Design of Switching Power Supply (Beijing: Publishing House of Electronics Industry) Chap. 2 (in Chinese)
[18] Yang X, Pei Y Q and Wang Z A 2004 Switching Power Supply Technology (Beijing: China Machine Press) Chap. 4 (in Chinese)
[19] Duan J S, An J Y and Xu M Y 2007 Appl. Math. J. Chin. Univ. Ser. B 22 7
[20] Xue D Y, Zhao C N and Chen Y Q 2006 Proceedings of IEEE International Conference on Mechatronics and Automation p. 1043
[21] Xue D Y and Chen Y Q 2007 MATLAB Solution to Mathematical Problems in Control (Beijing: Tsinghua University Press) Chap. 9 (in Chinese)
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[4] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[5] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[6] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[7] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[8] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[9] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[10] Data-driven modeling of a four-dimensional stochastic projectile system
Yong Huang(黄勇) and Yang Li(李扬). Chin. Phys. B, 2022, 31(7): 070501.
[11] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[12] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[13] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[14] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[15] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
No Suggested Reading articles found!