|
|
Feshbach resonance management of vector solitons in two-component Bose–Einstein condensates |
Wang Qiang (王强)a, Wen Lin (文林)a, Li Zai-Dong (李再东 )b |
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China |
|
|
Abstract We consider two coupled Gross-Pitaevskii equations describing a two-component Bose-Einstein condensates with time-dependent atomic interactions loaded in an external harmonic potential, and investigate the dynamics of vector solitons. By using a direct method, we construct a novel family of vector soliton solutions, which are the linear combination between dark and bright solitons in each component. Our results show that due to the superposition between dark and bright solitons, such vector solitons possess many novel and interesting properties. The dynamics of vector solitons can be controlled by Feshbach resonance technique, and the vector solitons can keep the dynamic stability against the variation of the scattering length.
|
Received: 27 February 2012
Revised: 07 March 2012
Accepted manuscript online:
|
PACS:
|
05.30.Jp
|
(Boson systems)
|
|
11.10.Lm
|
(Nonlinear or nonlocal theories and models)
|
|
Fund: Project supported by the National Key Basic Research Program of China (Grant Nos. 2011CB921502, 2012CB821305, 2009CB930701, and 2010CB922904), the National Natural Science Foundation of China (NSFC) (Grant Nos. 10934010 and 60978019), the NSFC-RGC (Grant Nos. 11061160490 and 1386-N-HKU748/10), and the Key Program of the Chinese Ministry of Education (Grant No. 2011015). |
Corresponding Authors:
Wen Lin, Li Zai-Dong
E-mail: wlqx@iphy.ac.cn; zdli2003@yahoo.com
|
Cite this article:
Wang Qiang (王强), Wen Lin (文林), Li Zai-Dong (李再东 ) Feshbach resonance management of vector solitons in two-component Bose–Einstein condensates 2012 Chin. Phys. B 21 080501
|
[1] |
Myatt C J, Burt E A, Ghrist R W, Cornell E A and Wieman C E 1997 Phys. Rev. Lett. 78 586
|
[2] |
Hall D S, Matthews M R, Ensher J R, Wieman C E and Cornell E A 1998 Phys. Rev. Lett. 81 1539
|
[3] |
Ho T L and Shenoy V B 1996 Phys. Rev. Lett. 77 3276
|
[4] |
Esry B D, Greene Chris H, Burke J P, Bohn Jr and John L 1998 Phys. Rev. Lett. 77 3594
|
[5] |
Malomed B A, Nistazakis H E, Frantzeskakis D J and Kevrekidis P G 2004 Phys. Rev. A 70 043616
|
[6] |
Kasamatsu K and Tsubota M 2004 Phys. Rev. Lett. 93 100402
|
[7] |
Xue J K, Li G Q, Zhang A X and Peng P 2008 Phys. Rev. E 77 016606
|
[8] |
Pu H and Bigelow N P 1998 Phys. Rev. Lett. 80 1130
|
[9] |
Pu H and Bigelow N P 1998 Phys. Rev. Lett. 80 1134
|
[10] |
Anderson B P, Haljan P C, Regal C A, Feder D L, Collins L A, Clark C W and Cornell E A 2001 Phys. Rev. Lett. 86 2926
|
[11] |
Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002 Science 296 1290
|
[12] |
Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
|
[13] |
Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402
|
[14] |
Zhang W P, Walls D F and Sanders B C 1994 Phys. Rev. Lett. 72 60
|
[15] |
Wang D S, Song S W, Xiong B and Liu W M 2011 Phys. Rev. A 84 053607
|
[16] |
Zhang X F, Yang Q, Zhang J F, Chen X Z and Liu W M 2008 Phys. Rev. A 77 023613
|
[17] |
Sun Z Y, Gao Y T, Yu X and Liu Y 2011 Europhys. Lett. 93 40004
|
[18] |
Li L, Li Z H, Li S Q and Zhou G S 2004 Opt. Commun. 234 169
|
[19] |
Li Q Y, Li Z D, Li L and Fu G S 2010 Opt. Commun. 283 3361
|
[20] |
Wen L, Li L, Li Z D, Song S W, Zhang X F and Liu W M 2011 Eur. Phys. J. D 64 473
|
[21] |
Wang D S, Zhang X F, Zhang P and Liu W M 2009 J. Phys. B 42 245303
|
[22] |
Kevrekidis P G, Frantzeskakis D J and Carretero- González R 2008 Emergent Nonlinear Phenomena in BoseEinstein Condensates (New York: Springer)
|
[23] |
Zhang X F, Hu X H, Liu X X and Liu W M 2009 Phys. Rev. A 79 033630
|
[24] |
Wang D S, Hu X H, Hu J P and Liu W M 2010 Phys. Rev. A 81 025604
|
[25] |
Li L, Malomed B A, Mihalache D and Liu W M 2006 Phys. Rev. E 73 066610
|
[26] |
Zhang X F, Zhang P, He W Q and Liu X X 2011 Chin. Phys. B 20 020307
|
[27] |
Liu X X, Pu H, Xiong B, Liu W M and Gong J B 2009 Phys. Rev. A 79 016412
|
[28] |
Li Q Y, Li Z D, Yao S F, Li L and Fu G S 2010 Chin. Phys. B 19 080501
|
[29] |
Ding C Y, Zhang X F, Zhao D, Luo H G and Liu W M 2011 Phys. Rev. A 84 053631
|
[30] |
Wang D S, Hu X H and Liu W M 2010 Phys. Rev. A 82 023612
|
[31] |
Pácuteerez-García Víctor M and Beitia Juan Belmonte 2005 Phys. Rev. A 72 033620
|
[32] |
Adhikari S K 2005 Phys. Lett. A 346 179
|
[33] |
Roberts J L, Claussen N R, Burke J P, Greene C H Jr, Cornell E A and Wieman C E 1998 Phys. Rev. Lett. 81 5109
|
[34] |
Cornish S L, Claussen N R, Roberts J L, Cornell E A and Wieman C E 2000 Phys. Rev. Lett. 85 1795
|
[35] |
Papp S B, Pino J M and Wieman C E 2008 Phys. Rev. Lett. 101 040402
|
[36] |
Thalhammer G, Barontini G, Sarlo L D, Catani J, Minardi F and Inguscio M 2008 Phys. Rev. Lett. 100 210402
|
[37] |
Abdullaev F K, Caputo J G, Kraenkel R A and Malomed B A 2003 Phys. Rev. A 67 013605
|
[38] |
Saito H and Ueda M 2003 Phys. Rev. Lett. 90 040403
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|