Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 080501    DOI: 10.1088/1674-1056/21/8/080501
GENERAL Prev   Next  

Feshbach resonance management of vector solitons in two-component Bose–Einstein condensates

Wang Qiang (王强)a, Wen Lin (文林)a, Li Zai-Dong (李再东 )b
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China
Abstract  We consider two coupled Gross-Pitaevskii equations describing a two-component Bose-Einstein condensates with time-dependent atomic interactions loaded in an external harmonic potential, and investigate the dynamics of vector solitons. By using a direct method, we construct a novel family of vector soliton solutions, which are the linear combination between dark and bright solitons in each component. Our results show that due to the superposition between dark and bright solitons, such vector solitons possess many novel and interesting properties. The dynamics of vector solitons can be controlled by Feshbach resonance technique, and the vector solitons can keep the dynamic stability against the variation of the scattering length.
Keywords:  Bose-Einstein condensates      vector solitons  
Received:  27 February 2012      Revised:  07 March 2012      Accepted manuscript online: 
PACS:  05.30.Jp (Boson systems)  
  11.10.Lm (Nonlinear or nonlocal theories and models)  
Fund: Project supported by the National Key Basic Research Program of China (Grant Nos. 2011CB921502, 2012CB821305, 2009CB930701, and 2010CB922904), the National Natural Science Foundation of China (NSFC) (Grant Nos. 10934010 and 60978019), the NSFC-RGC (Grant Nos. 11061160490 and 1386-N-HKU748/10), and the Key Program of the Chinese Ministry of Education (Grant No. 2011015).
Corresponding Authors:  Wen Lin, Li Zai-Dong     E-mail:  wlqx@iphy.ac.cn; zdli2003@yahoo.com

Cite this article: 

Wang Qiang (王强), Wen Lin (文林), Li Zai-Dong (李再东 ) Feshbach resonance management of vector solitons in two-component Bose–Einstein condensates 2012 Chin. Phys. B 21 080501

[1] Myatt C J, Burt E A, Ghrist R W, Cornell E A and Wieman C E 1997 Phys. Rev. Lett. 78 586
[2] Hall D S, Matthews M R, Ensher J R, Wieman C E and Cornell E A 1998 Phys. Rev. Lett. 81 1539
[3] Ho T L and Shenoy V B 1996 Phys. Rev. Lett. 77 3276
[4] Esry B D, Greene Chris H, Burke J P, Bohn Jr and John L 1998 Phys. Rev. Lett. 77 3594
[5] Malomed B A, Nistazakis H E, Frantzeskakis D J and Kevrekidis P G 2004 Phys. Rev. A 70 043616
[6] Kasamatsu K and Tsubota M 2004 Phys. Rev. Lett. 93 100402
[7] Xue J K, Li G Q, Zhang A X and Peng P 2008 Phys. Rev. E 77 016606
[8] Pu H and Bigelow N P 1998 Phys. Rev. Lett. 80 1130
[9] Pu H and Bigelow N P 1998 Phys. Rev. Lett. 80 1134
[10] Anderson B P, Haljan P C, Regal C A, Feder D L, Collins L A, Clark C W and Cornell E A 2001 Phys. Rev. Lett. 86 2926
[11] Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002 Science 296 1290
[12] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
[13] Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402
[14] Zhang W P, Walls D F and Sanders B C 1994 Phys. Rev. Lett. 72 60
[15] Wang D S, Song S W, Xiong B and Liu W M 2011 Phys. Rev. A 84 053607
[16] Zhang X F, Yang Q, Zhang J F, Chen X Z and Liu W M 2008 Phys. Rev. A 77 023613
[17] Sun Z Y, Gao Y T, Yu X and Liu Y 2011 Europhys. Lett. 93 40004
[18] Li L, Li Z H, Li S Q and Zhou G S 2004 Opt. Commun. 234 169
[19] Li Q Y, Li Z D, Li L and Fu G S 2010 Opt. Commun. 283 3361
[20] Wen L, Li L, Li Z D, Song S W, Zhang X F and Liu W M 2011 Eur. Phys. J. D 64 473
[21] Wang D S, Zhang X F, Zhang P and Liu W M 2009 J. Phys. B 42 245303
[22] Kevrekidis P G, Frantzeskakis D J and Carretero- González R 2008 Emergent Nonlinear Phenomena in BoseEinstein Condensates (New York: Springer)
[23] Zhang X F, Hu X H, Liu X X and Liu W M 2009 Phys. Rev. A 79 033630
[24] Wang D S, Hu X H, Hu J P and Liu W M 2010 Phys. Rev. A 81 025604
[25] Li L, Malomed B A, Mihalache D and Liu W M 2006 Phys. Rev. E 73 066610
[26] Zhang X F, Zhang P, He W Q and Liu X X 2011 Chin. Phys. B 20 020307
[27] Liu X X, Pu H, Xiong B, Liu W M and Gong J B 2009 Phys. Rev. A 79 016412
[28] Li Q Y, Li Z D, Yao S F, Li L and Fu G S 2010 Chin. Phys. B 19 080501
[29] Ding C Y, Zhang X F, Zhao D, Luo H G and Liu W M 2011 Phys. Rev. A 84 053631
[30] Wang D S, Hu X H and Liu W M 2010 Phys. Rev. A 82 023612
[31] Pácuteerez-García Víctor M and Beitia Juan Belmonte 2005 Phys. Rev. A 72 033620
[32] Adhikari S K 2005 Phys. Lett. A 346 179
[33] Roberts J L, Claussen N R, Burke J P, Greene C H Jr, Cornell E A and Wieman C E 1998 Phys. Rev. Lett. 81 5109
[34] Cornish S L, Claussen N R, Roberts J L, Cornell E A and Wieman C E 2000 Phys. Rev. Lett. 85 1795
[35] Papp S B, Pino J M and Wieman C E 2008 Phys. Rev. Lett. 101 040402
[36] Thalhammer G, Barontini G, Sarlo L D, Catani J, Minardi F and Inguscio M 2008 Phys. Rev. Lett. 100 210402
[37] Abdullaev F K, Caputo J G, Kraenkel R A and Malomed B A 2003 Phys. Rev. A 67 013605
[38] Saito H and Ueda M 2003 Phys. Rev. Lett. 90 040403
[1] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[2] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[3] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[4] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[5] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[6] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
[7] Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞). Chin. Phys. B, 2021, 30(10): 106701.
[8] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[9] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[10] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[11] Quantized vortices in spinor Bose–Einstein condensates with time–space modulated interactions and stability analysis
Yu-Qin Yao(姚玉芹)† and Ji Li(李吉). Chin. Phys. B, 2020, 29(10): 103701.
[12] Lattice configurations in spin-1 Bose–Einstein condensates with the SU(3) spin–orbit coupling
Ji-Guo Wang(王继国)†, Yue-Qing Li(李月晴), and Yu-Fei Dong(董雨菲). Chin. Phys. B, 2020, 29(10): 100304.
[13] Soliton guidance and nonlinear coupling for polarized vector spiraling elliptic Hermite-Gaussian beams in nonlocal nonlinear media
Chunzhi Sun(孙春志), Guo Liang(梁果). Chin. Phys. B, 2019, 28(7): 074206.
[14] Trapped Bose-Einstein condensates with quadrupole-quadrupole interactions
An-Bang Wang(王安邦), Su Yi(易俗). Chin. Phys. B, 2018, 27(12): 120307.
[15] Tunable ground-state solitons in spin-orbit coupling Bose-Einstein condensates in the presence of optical lattices
Huafeng Zhang(张华峰), Fang Chen(陈方), Chunchao Yu(郁春潮), Lihui Sun(孙利辉), Dahai Xu(徐大海). Chin. Phys. B, 2017, 26(8): 080304.
No Suggested Reading articles found!