Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 074208    DOI: 10.1088/1674-1056/21/7/074208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Sorption and permeation of gaseous molecules in amorphous and crystalline PPX C membranes: molecular dynamics and grand canonical Monte Carlo simulation studies

Bian Liang(边亮), Shu Yuan-Jie(舒远杰), and Wang Xin-Feng(王新峰)
Institute of Chemicals Materials, Chinese Academy of Engineering Physics, Mianyang 621900, China
Abstract  Amorphous and crystalline poly (chloro-p-xylylene) (PPX C) membranes are constructed by using a novel computational technique, that is, a combined method of NVT+NPT-molecular dynamics (MD) and gradually reducing the size (GRS) methods. The related free volumes are defined as homology clusters. Then the sorption and the permeation of gases in PPX C polymers are studied using grand canonical Monte Carlo (GCMC) and NVT-MD methods. The results show that the crystalline PPX C membranes provide smaller free volumes for absorbing or transferring gases relative to the amorphous PPX C area. The gas sorption in PPX C membranes mainly belongs to the physical one, and H bonds can appear obviously in the amorphous area. By cluster analyzing on the mean square displacement of gases, we find that gases walk along the x axis in the crystalline area and walk randomly in the amorphous area. The calculated permeability coefficients are close to the experimental data.
Keywords:  cluster analysis      parylene C      grand canonical Monte Carlo method      molecular dynamics  
Received:  05 October 2011      Revised:  11 March 2012      Accepted manuscript online: 
PACS:  42.70.Jk (Polymers and organics)  
  21.60.Gx (Cluster models)  
  68.43.Mn (Adsorption kinetics ?)  
  82.56.Lz (Diffusion)  
Corresponding Authors:  Shu Yuan-Jie     E-mail:  syjfree@sina.com

Cite this article: 

Bian Liang(边亮), Shu Yuan-Jie(舒远杰), and Wang Xin-Feng(王新峰) Sorption and permeation of gaseous molecules in amorphous and crystalline PPX C membranes: molecular dynamics and grand canonical Monte Carlo simulation studies 2012 Chin. Phys. B 21 074208

[1] Akihiko T, Norlakl F, Kolchl H, Keizo M and Noboru T 1994 J. Appl. Polym. Sci. 54 219
[2] Hu H X, Li X C, Fang Z M, Wei N and Li Q S 2010 Energy 35 2939
[3] Demirel M C 2008 Colloids Surfaces A 321 121
[4] Strel'tsov D R, Grigor'ev E I, Dmirtryakov P V, Erina N A, Mailyan K A, Pebalk A V and Chvalun S N 2009 Poly. Sci. Ser. A 51 881
[5] Smalara K, Gieldo A, Bobrowski M, Rybicki J and Czaplewski C 2010 J. Phys. Chem. A 114 4296
[6] Neyertz S and Brown D 2004 Macromolecules 37 10109
[7] Yang X D, Wang L J, Wang C, Long W and Shuai Z G 2008 Chem. Mater. 20 3205
[8] Fried J R, Akhavi M S and Mark J E 1998 J. Membrane Sci. 149 115
[9] Huang H L, Xu Y G and Yee L H 2005 Polymers 46 5949
[10] Suh M P, Moon H R, Lee E Y and Jang S Y 2006 J. Am. Chem. Soc. 128 4710
[11] Lu C H, Ni S J, Chen W K, Liao J S and Zhang C J 2010 Comput. Mater. Sci. 49 565
[12] Fox T G and Flory P J 1950 J. Appl. Phys. 21 581
[13] Anderson W R and Conne C B 2009 Proc. Combust. Inst. 32 2123
[14] Tarver C M and Koerner J G 2008 J. Energ. Mater. 26 1
[15] Ahn J, Chung W J, Pinnau I, Song J S, Du N Y, Robertson G P and Guiver M D 2010 J. Membrane Sci. 346 280
[16] Chang K S, Tung C C, Wang K S and Tung K L 2009 J. Phys. Chem. B 113 9821
[17] Milman V, Refson K, Clark S J, Pickard C J, Yates J R, Gao S P, Hasnip P J, Probert M I J, Perlov A and Segall M D 2010 J. Mol. Struc. Theochem. 954 22
[18] Bartnicka A S, Olejniczak S, Ciesielski W, Nosal A, Szymanowski H, Lipman M G and Potrzebowski M J 2009 J. Phys. Chem. B 113 5464
[19] Anelli P L, AshtonP R, Spencer N, Slawin A M Z, Stoddart J F and Williams D J 1991 Angew. Chem. Int. Ed. 30 1036
[20] Merchant M E 2009 J. Appl. Phys. 16 267
[21] Dafflon B, Irving J and Holliger K 2009 J. Appl. Geophys. 68 60
[22] Ewald P P 1921 Ann. Phys. 396 253
[23] Bian L, Shu Y J, Wang X F and Zhou Y 2011 Integr. Ferroelectrics 127 83
[24] Seiji I, Masaki T, Masayoshi O, Akiyoshi K and Kenichi K 1983 Polymers 24 1155
[25] Shih C Y, Chen Y and Tai Y C 2006 Sensors Actuators A Phys. 126 270
[26] Yeh Y S, James W J and Yasuda H 1990 J. Polym. Sci. 28 545
[27] Pavel D and Shanks R 2005 Polymer 46 6135
[28] Chen Y, Liu Q L, Zhu A M, Zhang Q G and Wu J Y 2010 J. Membrane Sci. 348 204
[29] Tomohisa Y, Akinori Y, Kouhei K and Toshinori T 2008 Desalination 233 333
[30] Bezus A G, Kiselev A V, Lopatkin A A and Du P Q 1973 J. Colloid Interface Sci. 45 386
[31] Plathe F M 1994 Acta Polym. 45 259
[32] Metzen R P, Egert D, Ruther P and Stieglitz T 2009 IFMBE Proceedings 25 96
[33] Oyewale A O and Aitken R A 1995 J. Therm. Anal. 45 1393
[34] Shih C Y, Harder T A and Tai Y C 2004 Microsyst. Technol. 10 407
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!