Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 114218    DOI: 10.1088/1674-1056/27/11/114218
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Polymer waveguide thermo-optical switch with loss compensation based on NaYF4: 18% Yb3+, 2% Er3+ nanocrystals

Gui-Chao Xing(邢桂超), Mei-Ling Zhang(张美玲), Tong-He Sun(孙潼鹤), Yue-Wu Fu(符越吾), Ya-Li Huang(黄雅莉), Jian Shao(邵健), Jing-Rong Liu(刘静蓉), Fei Wang(王菲), Da-Ming Zhang(张大明)
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
Abstract  

A polymer waveguide thermo-optical switch with loss compensation based on NaYF4:18% Yb3+, 2% Er3+ nanocrystals, fabricated by traditional semiconductor processes, has been investigated. NaYF4:18% Yb3+, 2% Er3+ nanocrystals were prepared by a pyrolysis method. The morphology and luminescent properties of the nanocrystals were characterized. The nanocrystals were doped into SU-8 as the core material of an optical waveguide amplifier. The size of the device was optimized for its optical and thermal fields as well as its transmission characteristics. The device was fabricated on a silica substrate by spin coating, photolithography, and wet etching. The insertion loss of the switch device is~15 dB. The rise and fall times of the device are 240 μs and 380 μs, respectively, as measured by application of a 304 Hz square wave voltage. The extinction ratio of the device is about 14 dB at an electrode-driving power of 7 mW. When the pump light power is 230 mW and the signal light power is 0.1 mW, the loss compensation of the device is 3.8 dB at a wavelength of 1530 nm. Optical devices with loss compensation have important research significance.

Keywords:  NaYF4:18% Yb3+      2% Er3+ nanocrystals      loss compensation      polymer  
Received:  25 April 2018      Revised:  23 July 2018      Accepted manuscript online: 
PACS:  42.70.Jk (Polymers and organics)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.79.-e (Optical elements, devices, and systems)  
  42.79.Gn (Optical waveguides and couplers)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61475061 and 61575076).

Corresponding Authors:  Fei Wang     E-mail:  wang_fei@jlu.edu.cn

Cite this article: 

Gui-Chao Xing(邢桂超), Mei-Ling Zhang(张美玲), Tong-He Sun(孙潼鹤), Yue-Wu Fu(符越吾), Ya-Li Huang(黄雅莉), Jian Shao(邵健), Jing-Rong Liu(刘静蓉), Fei Wang(王菲), Da-Ming Zhang(张大明) Polymer waveguide thermo-optical switch with loss compensation based on NaYF4: 18% Yb3+, 2% Er3+ nanocrystals 2018 Chin. Phys. B 27 114218

[1] Gosciniak J, Markey L, Dereux A and Bozhevolnyi S I 2012 Opt. Express 20 16300
[2] Bontempi F, Faralli S, Andriolli N and Contestabile G 2013 IEEE Photon. Technol. Lett. 25 2178
[3] Coppola G, Sirleto L, Rendina I and Iodice M 2011 Opt. Eng. 50 071112
[4] Palmer R 2014 J. Lightwave Technol. 32 2726
[5] Wang J, Kroh M, Richter T, Theurer A, Matiss A, Zawadzki C, Zhang Z Y, Schubert C, Steffan A, Grote N and Keil N 2012 IEEE Photon. Technol. Lett. 24 1718
[6] Chen C, Niu X Y, Han C, Shi Z, Wang X B, Sun X Q, Wang F, Cui Z and Zhang D M 2014 Opt. Express 22 19895
[7] Tsang K, Wong C Y and Pun E Y B 2010 IEEE Photonics Technol. Lett. 22 1024
[8] Tu Z R, Gao D S, Zhang M L and Zhang D M 2017 Opt. Express 25 20911
[9] Yang B, Zhu Y, Jiao Y, He S and Dai D 2011 J. Lightwave Technol. 29 2009
[10] Kim J, Lee W Y, Kang J W, Kwon S K, Kim J J and Lee J S 2001 Macromolecules 34 7817
[11] Zheng Y, Chen C M, Gu Y L, Zhang D M, Cai Z Z, Shi Z S, Wang X B, Yi Y J, Sun X Q, Wang F and Cui Z C 2015 Opt. Mater. Express 5 242132
[12] Zhang M L, Zhang W W, Wang F, Zhao D, Qu C Y, Wang X B, Yi Y J, Eric C and Zhang D M 2016 Sci. Rep. 6 36729
[13] Zhao P C, Zhang M L, Wang T J, Liu X Y, Zhai X S, Qin G S, Qin W P, Wang F and Zhang D M 2014 J. Nanomater. 2014 153028
[14] Guo R M, Wang X J, Zang K, Wang B, Wang L, Gao L F and Zhou Z P 2011 Appl. Phys. Lett. 99 161115
[15] Yi Y J, Wang H R, Liu Y, Jiang M H, Wang X B, Wang F and Zhang D M 2015 IEEE Photon. Tech. Lett. 27 2411
[16] Chen G F R, Zhao X Y, Sun Y, He C B, Tan M C and Tan D T H 2017 Sci. Rep. 7 3366
[17] Zhao P C, Chen H Q, Zheng C T, Wang F, Zhang D M and Ma C S 2014 Opt. Quant. Electron. 46 1571
[18] Wang T J, Zhao D, Zhang M L, Yin J, Song W Y, Jia Z X, Wang X B, Qin G S, Qin W P and Wang F 2015 Opt. Mater. Express 5 469
[19] Naseem S, Riaz S and Sahar M R 2013 Chin. Phys. Lett. 30 027301
[20] Feng S Y, Chen D P and Yu C L 2017 Acta Phys. Sin. 66 164204(in Chinese)
[21] Zhang D, Chen C, Chen C M, Ma C S, Zhang D M, Bo S H and Zhen Z 2007 Appl. Phys. Lett. 91 161109
[22] Lei K L, Chow C F, Tsang K C, Lei E N Y, Roy V A L, Lam M H W, Lee C S, Pun E Y B and Li J S 2010 J. Mater. Chem. 20 7526
[23] Yin J, Qu C Y, Zhang M L, Wang X B, Yi Y J, Chen C M, Sun X Q, Wang F and Zhang D M 2015 Acta Opt. Sin. 35 1213001(in Chinese)
[24] Chen C M, Wang F and Zhang D M 2012 Chin. Phys. Lett. 29 014212
[25] Cao Y, Tian L and Sun Y 2017 Chin. Phys. B 26 124215
[26] Schafft H A 1987 IEEE Trans. ED 34 664
[27] Wang X, Howley B, Chen M Y and Chen R T J 2006 J. Lightwave Technol. 24 1558
[1] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[2] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[3] Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping
Liangjun Chen(陈凉君), Wei Wang(王维), Shengqiang Xiao(肖生强), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2022, 31(2): 028507.
[4] Recent progress in design of conductive polymers to improve the thermoelectric performance
Zhen Xu (徐真), Hui Li (李慧), and Lidong Chen(陈立东). Chin. Phys. B, 2022, 31(2): 028203.
[5] Structure design for high performance n-type polymer thermoelectric materials
Qi Zhang(张奇), Hengda Sun(孙恒达), and Meifang Zhu(朱美芳). Chin. Phys. B, 2022, 31(2): 028506.
[6] Variational approximation methods for long-range force transmission in biopolymer gels
Haiqin Wang(王海钦), and Xinpeng Xu(徐新鹏). Chin. Phys. B, 2022, 31(10): 104602.
[7] Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(1): 018202.
[8] Phase transition of asymmetric diblock copolymer induced by nanorods of different properties
Yu-Qi Guo(郭宇琦). Chin. Phys. B, 2021, 30(4): 048301.
[9] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[10] Driven injection of a polymer into a spherical cavity: A Langevin dynamics simulation study
Chao Wang(王超), Fan Wu(吴凡), Xiao Yang(杨肖), Ying-Cai Chen(陈英才), and Meng-Bo Luo(罗孟波). Chin. Phys. B, 2021, 30(10): 108202.
[11] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[12] Dynamic recombination of triplet excitons in polymer heterojunctions
Ya-Dong Wang(王亚东), Jian-Jun Liu(刘建军), Xi-Ru Wang(王溪如), Yan-Xia Liu(刘艳霞), and Yan Meng(孟艳). Chin. Phys. B, 2020, 29(11): 117101.
[13] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[14] Distribution of a polymer chain between two interconnected spherical cavities
Chao Wang(王超)†, Ying-Cai Chen(陈英才), Shuang Zhang(张爽), Hang-Kai Qi(齐航凯), and Meng-Bo Luo(罗孟波)‡. Chin. Phys. B, 2020, 29(10): 108201.
[15] Photoluminescence changes of C70 nanotubes induced by laser irradiation
Han-Da Wang(王汉达), De-Di Liu(刘德弟)†, Yang-Yang He(何洋洋), Hong-Sheng Jia(贾洪声)‡, Ran Liu(刘然), Bo Liu(刘波), Nai-Sen Yu(于乃森), and Zhen-Yi Zhang(张振翼). Chin. Phys. B, 2020, 29(10): 104209.
No Suggested Reading articles found!