Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 060202    DOI: 10.1088/1674-1056/21/6/060202
GENERAL Prev   Next  

Estimation of key rate after setting dead time

Liu Dong(刘东)a), Yin Zhen-Qiang(银振强) a)†, Wang Shuang(王双)a)‡ger Wang Fen-Mei(王粉梅)b), Chen Wei(陈巍)a) and Han Zheng-Fu(韩正甫)a)
a. Key Laboratory of Quantum Information of the Chinese Academy of Sciences,University of Science and Technology of China, Hefei 230026, China;
b. Army Officer Academy of PLA, Hefei 230031, China
Abstract  The estimation of key rate is an important aspect of the quantum key distribution process, especially in the use of dead time. In this paper, we demonstrate a numerical simulation to estimate the average detection probability and the key rate. Using our method, the estimated average detection probability is better than the previous result. Besides, we can easily find the best dead time, especially when considering the impact of after pulse.
Keywords:  dead time      key rate      quantum key distribution  
Received:  05 December 2011      Revised:  27 December 2011      Accepted manuscript online: 
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National High Technology Research and Development Program of China (863 Program) (Grant No. 2009AA01A349).
Corresponding Authors:  Yin Zhen-Qiang, Wang Shuang     E-mail:  yinzheqi@mail.ustc.edu.cn; wshuang@ustc.edu.cn

Cite this article: 

Liu Dong(刘东), Yin Zhen-Qiang(银振强), Wang Shuang(王双) Wang Fen-Mei(王粉梅), Chen Wei(陈巍) and Han Zheng-Fu(韩正甫) Estimation of key rate after setting dead time 2012 Chin. Phys. B 21 060202

[1] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[2] Ma X F, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[3] Gottesman D, Lo H K, Norbert L and John P 2004 Quantum Infor. Comput. 4 325
[4] Liu Y, Wu Q L, Han Z F, Dai Y M and Guo G C 2010 Chin. Phys. B 19 080308
[5] Chang J and Wu L A 2003 Acta Phys. Sin. 52 5 (in Chinese)
[6] Stucki D, Ribordy G, Stefanov A, Zbinden H, Rarity J G and Wall T 2011 J. Mod. Opt. 48 1967
[7] Zhang J, Rob T, Claudio B and Hugo Z 2009 Appl. Phys. Lett. 95 091103
[8] Yuan Z L, Sharpe A W, Dynes F, Dixon A R and Shields A J 2010 Appl. Phys. Lett. 96 071101
[9] Eleni D 2006 Security and Implementation of Differential Phase Shift Quantum Key Distribution Systems Ph. D. Thesis (California: Stanford University)
[10] Stucki D, Gisin N, Guinnard O, Ribordy G and Binden H 2002 New J. Phys. 4 41
[11] Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L and Guo G C 2008 Chin. Phys. Lett. 25 10
[12] Xu F X, Chen W, Wang S, Yin Z Q, Zhang Y, Liu Y, Zhou Z, Zhao Y B, Li H W, Liu D, Han Z F and Guo G C 2009 Chin. Sci. Bull. 54 17
[13] Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[14] Feng X X, Huang T, Dong S L, Xiao L T and Jia S T 2008 Journal of Test and Measurement Technology 22 No. 6
[15] Yoshizawa A, Kaji R and Tsuchida H 2003 Opt. Express 11 1303
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[7] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[12] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[13] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[14] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[15] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
No Suggested Reading articles found!